Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Sage Reference Manual

719591 views
1
Search.setIndex({envversion:42,terms:{fouc:260,binary_search_insert:[185,286,285],vertices_in_root_spac:24,oa_n_times_2_pow_c_from_matrix:[144,268],orthogon:[],mols_10_2:268,from_labelled_dyck_word:128,yellow:[198,93,40,52,306],interchang:[56,143,6,285,198,106],four:[259,253,195,268,0,276,57,163,285,286,184,287,311,293,147,222,35,68,128],sqs4:129,prefix:[228,77,4,5,271,241,84,141,174,169,150,269,253,93,112,280,307,143,184,186,188,176,205,193,40,42,116,283,199,163,297,214,304,305,140,61,311,312,231,313,147,68],edge_str:163,travaux:286,uppuluri:[],pierifactors_type_c_affin:[44,225],to_virtual_configur:220,sqs8:129,typeerror:[77,5,165,171,90,43,253,280,307,22,2,184,269,277,42,283,200,122,163,130,189,272,298,311,56,305,59,61,92,143,154],subquiv:217,abbaababbaabbaabbaababbaababbaabbaababba:307,leg_cel:306,usepackag:[93,52,184],coucou:276,mrreview:0,decreasingli:[21,269],some_el:[228,143,142,313,193,147,241,16],oa_520_plus_x:268,classicalweylsubgroup:205,"0936v2":286,digit:[253,42,56,307,184,312,231,147,190,192],number_theori:[253,306],symmetricgroupalgebra_n:61,straighten_input:180,new_input_alphabet:184,oa_10_205:268,fractal:[],zzzzza:42,leaf_label:[84,285],irreducbl:222,hadamard_matrix_paleyi:81,list_to_dict:74,setmorph:283,bill:253,p_k:[19,169],finite_tensor_product:[203,26],miller:[286,88,229,163],set_partition_composit:[186,169],p_a:306,second:[229,268,160,5,7,217,83,242,184,247,171,43,253,286,296,272,179,99,309,27,266,195,40,42,261,283,117,122,317,163,128,132,53,301,56,137,70,74,308,140,92,220,65,68,306],to_ordered_tre:256,latex_hspac:185,componentcryst:254,rcrystal:254,cells_map_as_squar:0,hull:[276,229,163],"0x7f8fd3abe500":[],rctokrtbijectiontypea2du:181,lapoint:[42,77,180,306,7,92],widget:276,a000255:56,symmetricfunctionalgebra_schur:14,golden_ratio:307,here:[6,7,14,16,22,26,30,35,40,41,42,50,58,59,61,92,68,69,70,74,77,80,82,84,281,93,289,99,106,111,117,119,163,127,128,131,137,140,142,143,198,146,147,149,160,243,165,141,171,180,48,2,184,185,190,205,195,261,278,201,203,207,208,211,218,220,221,223,228,229,241,242,247,150,260,269,253,272,256,259,144,21,266,276,277,283,115,285,286,291,293,301,306,311,317],suntil:212,to_classical_weyl:241,spkg:[137,88],pos3d:276,zetlin:58,weaktableau_factorized_permut:180,setpartitionsxkel:169,is_immut:304,number_of_rooted_tre:48,as_ordered_tre:285,weightedintegervectors_nweight:114,symmetricgroupbruhatorderposet:[189,163],tamari_inversions_it:185,from_affine_weyl:241,llt_famili:4,"0x7f8fd3ad58c0":[],clonableintarrai:[87,317],unic:[5,312],aabbb:[311,42],aabba:42,substr:[98,286,33],txt:[125,59,81,56],univ:[286,75,41,42,5,58,117,272],unit:[],constuct:266,cliffordalgebra:74,"_check":[72,91,230,246,196,284,318,159,294,107,273,71],finite_state_machine_gener:190,yangian:207,fam:313,overshadow:272,from_cod:22,tokuyama_formula:58,strike:256,musik:[35,319,217,120,279],until:[253,286,256,42,56,306,293,7,184,166,21,186,269,169,190,90],aut:[306,184],partitions_n:306,to_weyl_group_el:287,"05d":80,folding_of:[70,291],notic:[276,286,88,78,258,48,260,7,140,310,306,283,207,34,14,68,249,16],partitions_c:209,exce:[189,56],leporati:42,lynfac:42,lnsss2013:11,hole:[268,144,7,0],hold:[75,164,81,84,168,11,260,269,281,286,22,184,190,111,113,195,0,7,115,285,122,291,306,62,153],k_irreduc:306,tp_krt:[113,85,255,181,197,220,103,104,105,10,292,109,153],setpartitionsrkhalf_k:169,generalis:[301,293],load_data:120,conceptu:84,shardposetel:300,sturmian:[312,42,307],integer_sequ:132,touch_point:[128,256],i_m:[133,216],s0002:[286,179,163,285,222,43],wang:184,indistinguish:56,cautiou:[195,261,137,278,80,144,88,131,266],coambient:[6,218],caution:[137,278,68,266,78],fibonacci:[253,42,307,56,311,65,171],want:[228,229,158,160,80,241,84,184,171,88,269,253,21,180,48,220,101,30,266,218,310,205,276,195,261,278,285,203,291,163,208,12,130,131,55,211,301,56,137,306,140,61,142,311,304,144,222,319,154],unmarkedt:180,berenstein:7,with_linear_extens:163,classical_cryst:[228,265],shuffl:[],khlp:[283,77],travel:256,hom:[283,115],classifi:[281,163,291,160],revisit:[305,286],how:[76,77,78,5,293,7,80,82,84,264,269,247,171,88,260,173,281,286,272,256,22,160,101,52,21,266,251,108,190,276,277,40,253,261,283,278,285,165,290,291,163,20,130,131,298,211,304,56,137,57,306,59,140,218,310,143,144,287,68],hou:43,abaababacabba:42,perspect:253,azzzzz:42,contains_binary_tre:185,frobeniu:[228,211,272,258,260,306,140,92,14,68,249],shorei:65,intermediate_typ:160,with_leav:285,diagram:[],homotheti:40,wrong:[283,286,129,42,56,22,48,319,7,186,120,217,62,84,144,184,169,33,171,88,130],beauti:253,generalized_nonnesting_partition_lattic:143,diagramalgebra:186,ground_set:[137,173],markoff_numb:307,classmethod:[256,180,259,2,240,291,295],chern:212,revolv:102,semimodular:29,alias:[140,201],type_:[236,295],output_project:184,a001006:[269,56],groupdivisibledesign:[57,144,278,266],is_squar:[231,42,271],is_palindrom:[311,47,231,42],matsumoto:308,nilcoxeteralgebra:121,v_c:29,finitewordpath_3d_iter_with_cach:311,vari:[93,296,61],issubset:[115,163],fit:[276,306,290,176],fix:[72,228,59,268,160,5,48,293,7,166,306,229,201,174,246,247,171,307,128,269,43,253,266,254,178,272,256,257,22,24,78,100,2,101,21,183,187,218,108,287,34,35,273,276,184,42,284,119,46,122,296,290,291,159,163,207,107,130,115,301,298,133,319,220,56,137,286,70,74,308,140,61,142,143,144,65,0,318,68,151,58],fib:[253,171,307,182,56],binary_search_tre:[185,286,285],fig:285,nonsymmetricmacdonaldpolynomi:[12,142,218,82],easier:[113,54,184],find_recursive_construct:251,incoming_edg:200,proce:[212,56,285,218,30,291,147,130,269],enrich:195,from_polynomial_exp:322,rectangl:[281,40,256,42,306,164,310,106,189,207,153],free_prelie_algebra:16,interrupt:253,sub_poset:185,repaint:93,quasisymmetr:[],adbec:148,lam2008:225,anatol:310,acmp:141,f4d:13,arrow:[276,265,223,21,143,70,119,184,311,288,106,291,108,163,13,127,35,90,132],debug:[228,183,82,208,160],coxeter_diagram:[291,232,233],permus_mset:68,has_transit:184,from_permut:224,node_to_word:90,to_integer_word:[312,42],oa_from_wider_oa:144,abaccefa:59,mason:162,mazur:128,nakajima:[],adapt:269,plot3d:[253,93,47,276],vertex_s:[205,290,276],from_rank:[286,63],impract:253,laurent_polynomi:142,written:[293,241,27,88,260,269,43,253,286,272,256,22,184,29,190,283,115,285,201,125,52,211,301,56,137,58,140,218,312,146,68,306,11],vertical_flip:7,bertet:29,young_subgroup_gener:[306,293],jennif:306,a1xa1xa1:101,product_by_coercion:68,irreducible_character_freudenth:228,number_of_idesc:286,tensor_symbol:141,left_split:[281,220,55],cofre:115,ds2:62,sahi:218,pfaff:225,ds1:62,sakamoto13:310,unabl:[311,299,77,22,283,2,92,144,168,176],word_inheritance_howto:59,confus:[286,115,301,6,7,185,171,151],polyhedron:[143,276,24,163],allexactcov:[133,216],starosta:[5,93,176,42],infiniteenumeratedset:[171,147],from_iter:163,wast:[276,173],instruct:[127,199,268,241],conjugaci:[5,283,286,306,222],prepone_output:184,trialiti:[228,160],dlx_solut:40,rootedtre:48,zoghbi:209,xii:283,wcheck:82,goldbach:253,to_inv:256,kyotopathmodel:[263,203],todorov12:268,master:144,similarli:[160,6,165,241,168,184,269,253,272,22,259,26,27,190,276,280,283,122,203,297,130,298,211,306,142,146,225],trivial_covering_design:173,listen:129,a000165:56,commutative_additive_semigroup:141,a000166:56,ngen:289,krttorcbijectionabstract:[113,105],a000169:56,wisdom:306,combinatorialspeciesstructur:161,mathematisch:[286,106,225],semiprim:56,technic:[276,277,300,0,42,253,215,293,298,163,68],bnjr:151,non_r:144,orthogonal_transform:40,tree:[],pieri_macdonald_coeff:211,project:[268,160,5,6,240,241,141,11,247,171,88,173,93,20,272,143,259,184,234,266,106,218,276,195,115,201,291,295,297,56,137,57,140,61,142,311,144],words_in_out:184,finitewordpath_hexagonal_grid_tupl:311,cayley_graph:[205,276],multiplicativegroupel:313,dualquasisymmetric_schur:140,set_clust:319,uniniti:[289,78],deriveddesign:17,has_left_desc:[170,286,287,205],spectrum:5,increment:[286,40,212,42,102,125,316],incompat:[22,68,211,184,125],incompar:[304,163],grassmannian_quoti:287,sakamoto:[281,153,310],affine_permut:287,u_0:65,simplifi:[62,253,114,184],shall:[228,100,184],object:[],victoria:129,monomi:[],specifi:[5,7,11,43,265,22,24,26,30,35,40,176,42,262,52,55,58,59,231,66,68,76,82,83,281,93,289,282,98,99,101,15,106,108,114,117,122,163,128,130,137,140,141,142,143,147,151,12,160,165,168,169,170,171,180,48,2,184,185,186,190,205,200,201,203,207,297,211,287,217,218,220,222,223,228,229,235,236,241,214,150,269,112,272,256,307,258,264,21,275,276,280,283,115,285,286,290,291,293,301,306,310,312,319],letter:[],new_ord:289,macbook:141,singer:247,pols10:268,descalgrevisit:305,gale57:130,dummi:56,varagnolo:293,elementarycryst:[254,26],mostli:[143,276,265],standard_unmarked_iter:180,adbc:148,septembr:311,"0x7f8fd3abec08":[],is_el_label:163,crystalograph:291,exponentialgeneratingseriesr:78,factor_set:[231,42],layout:[5,127,276,90,163],symetriqu:272,nondecreasingparkingfunctions_al:2,siev:[],gallai:62,asymptotic_mo:184,rich:42,woodward:52,is_commut:[305,68],ch2006:43,cassnic10:5,vizual:276,counit_on_basi:[297,201],ceil:[56,22,306,7,130,269],multiplicative_ord:88,abaaababaabaabaaababaabaaababaaababaabaa:307,finitewordpath_cube_grid_tupl:311,amitai:306,set_immut:[171,0],thematic_tutori:[228,160],ever:276,patch:[93,184],nb_factor_occurrences_in:42,coproduct:[298,297,272,77,116,260,115,140,27,165,258,201,283,49,14,68,249,309],highest_weight_cryst:[275,132],unexpectedli:[140,272],transitiveid:147,job:[277,243],accessible_compon:184,polyomi:218,result:[5,7,11,14,16,43,265,22,30,42,46,262,55,70,74,61,62,68,71,75,76,84,88,90,91,281,93,0,101,104,108,119,120,122,163,131,140,142,143,198,147,155,160,165,166,169,268,171,175,178,180,48,184,185,186,190,205,195,261,199,201,317,297,211,212,217,218,220,222,228,229,208,244,247,249,253,254,272,256,307,258,260,196,144,21,266,276,277,280,283,115,285,286,294,298,301,304,306,309,310,312,319],respons:184,fail:[6,13,167,141,247,269,0,256,22,184,32,190,276,42,201,293,130,189,132,304,61,231,147,319],weight_multipl:228,best:[253,286,0,276,5,33,165,208,141,146,20,173,132],coproduct_on_gener:[49,258,249,140],randomword:[312,42,307],irr:228,wikipedia:[229,7,165,81,242,247,171,88,269,43,253,178,0,143,24,184,29,266,190,35,193,276,42,261,285,119,291,163,56,137,57,70,311,144,63,33,223,306],get_order_cmp:141,buch00:52,figur:[253,93,229,276,291,262,52,132],spin_crystal_type_b_el:50,rootswithheightel:132,ira:68,cartan_type_check:69,standardpermutations_all_with_categori:178,extend:[],map_support:283,vee_:[143,276,277],is_compound:291,linear_extens:[185,304,306,285,29,198,163,47,189],extens:[],dominant_weight:275,carbon:253,advertis:184,tensor_constructor:141,accident:160,hashabl:[303,137,48,184,141,163],shuffleproduct_w1w2:34,nilcoxet:[306,225],"05b15":0,logic:[190,276,114],kirillovreshetikhincrystalfrompromot:106,finitewordpath_triangle_grid_callable_with_cach:311,isomorphic_subposet:163,compromis:253,fixedpointofmorph:307,"2nd":[283,84,128,56],aabbabaa:[312,42],aabbabab:311,finitewordpath_all_tupl:311,root_lattice_realization_algebra:[218,142],diff:253,"2np":144,assum:[228,74,160,5,235,236,7,165,82,11,247,170,171,269,93,289,272,256,257,22,23,266,101,29,21,186,106,218,191,155,195,184,42,285,201,122,265,291,163,127,295,130,319,301,0,304,57,70,59,322,205,61,143,144,231,146,286,68,69,306],gxz:128,duplic:[171,303,220,184,15],union:[229,242,141,27,169,247,171,269,253,93,22,148,48,184,186,176,34,195,40,286,163,137,308,143,65],"0367v3":229,latex_marking_str:211,type_d_affin:45,tunnel_typ:256,much:[253,286,289,301,42,78,293,184,208,312,141,146,65,163,247,317,269,291],fulltensorproductofregularcryst:[21,153],beta2:0,beta1:0,"__doc__":42,"_max_length":[130,269],life:[128,20],eastern:153,letter_separ:[312,60],is_weight:66,cube_grid:311,catalannumb:171,child:[253,39,84,285,48,30,147,125,207],reuteuna:307,doti:186,spin:[],davi:225,kirillovreshetikhintableaux:[281,55,123,310,106,153],emploi:285,show_depth:[319,217],is_conjugate_with:42,castro:283,euclidean:[311,6,88,291],viii:235,coweight:[277,143,259,6,238,218,241,313,291,243,13],a000396:56,ext_orbit:222,y_lambdacheck:[218,82],extendedaffineweylgroup:241,expat:125,"_lst":287,player:253,zmod:[140,208,266,247,68,43],are_attack:12,oa_11_640:[144,268],hong:[296,203,119],jame:[301,256,306,293,61,63,163,128,260],counter_exampl:253,transpar:[143,276],renumb:128,bf02187680:163,split:[],is_square_fre:[231,42],european:[186,195,184],abcabcaabbc:311,critical_expon:[42,307],gec81:304,topo:42,fairli:291,"07e":80,left_tableau:[286,20],is_endomorph:5,store_states_dict:184,refin:[254,256,22,305,163,229,26,300,289,162,171,68,189],spallon:222,classical_weyl:241,bewar:[143,295,7,16,272],always_include_output:184,scalar_mult:141,"_element":[113,176],"_________":128,hohlweg:115,reccurs:143,iter_of_elements_coeff:141,maxima:171,to_major_cod:286,characteristicspeciesstructur:72,golden:307,read2011:300,ordin:[35,256,163],"0x7f8fbe34b9b0":[],skewtableau:[180,224,117,122],contains_dyck_word:185,previous:[62,217,184,29,163,319],a001110:56,ham:[190,184],easi:[],"lin\u00e9air":42,had:[253,276,184,104,81,128,173],ribbontableau:117,macdonald:[],partition_of_domain_alphabet:5,ambient_cryst:106,east:[211,256,306,7,311,52],sumspeci:196,bbbaaa:42,preserv:[277,229,40,42,22,297,6,48,140,61,163,30,296,184,222,262,68,115],posed:190,standardpermutations_recoilsfatt:286,upper_hook:306,poset:[],functori:[],monteil:[311,42],measur:[306,40],pre_lie_product_on_basi:16,scan:7,specif:[],from_binary_tre:185,simpleisotypeswrapp:149,oa_20_352:[144,268],bobbi:171,sebastian:61,underli:[229,75,235,236,293,7,242,11,88,16,253,286,289,0,180,23,48,266,184,21,186,106,310,35,301,276,42,199,278,265,163,9,207,128,296,132,212,137,217,61,142,304,198,319],right:[228,160,5,293,7,165,241,214,141,170,16,269,266,281,286,272,256,21,0,98,220,184,18,30,186,108,190,205,276,315,42,278,285,201,185,122,163,206,128,166,12,130,189,298,55,211,301,305,58,140,61,248,311,312,144,147,287,223,68,82,306,153,71],old:[303,306,115,184,163,171],crowd:276,crochemore_factor:[311,42],g_r:66,permutationrun:286,weyl_group_act:228,ds1992:256,aaabbbbb:42,uniq:[48,189],bottom:[293,7,166,169,281,0,256,258,29,21,186,108,42,117,201,122,163,262,130,189,301,212,304,305,306,315,223,224,319,153],plot_coroot:[143,276],cmp_element:23,fox:[272,42],"4276v4":35,subclass:[275,277,301,42,30,143,285,48,82,185,84,186,21,290,291,147,171,295,269],condit:[76,160,7,141,225,171,269,253,286,296,272,256,180,100,144,52,185,108,190,277,40,0,164,117,317,143,206,127,130,306,22,220,221,65,223,319],foo:[283,285,2,201,163,171,154],canonical_embed:61,"__ne__":163,sensibl:68,incidence_algebra:[193,163],annal:[65,43],moduleswithbasi:[141,201],g_2:291,column_shap:281,hadamard:[],to_standard:286,explain_construct:[247,144,195],wpaper:128,slightli:[253,286,268,301,256,137,243,7,30,163,35,269],oa_16_176:[144,268],marked_cst_to_transposition_sequ:180,leading_support:[272,142],soc:[228,77,160,293,165,241,225,88,93,296,179,108,205,115,286,163,127,132,305,58,309,61,142,221,222,68,306],ncsymd:27,dyson:306,sol:253,barycentr:[143,234,240,276],reduced_lambda_catabol:7,ishift:286,wrap:[150,241,42,137,283,306,163,15,257,145,293,125,190,171,88,20,173,154],test_comp:140,canonical_orthogon:40,suffici:[228,195,137,184,84,146,171],sloaneencyclopedia:56,psi_int_test:140,support:[6,165,321,295,141,61,247,171,262,269,256,26,184,186,190,283,115,285,291,293,207,128,52,298,54,33,59,218,142,231,68,225],avail:[228,268,160,5,6,164,165,84,184,247,170,88,125,253,93,0,251,143,27,266,173,176,190,35,37,195,42,261,278,201,291,163,128,297,131,256,137,306,61,142,311,144,146,147,286,293],width:[281,76,42,84,264,58,261,321,224,185,30,106,256,163,168,104,310,311,306,207],spring:[35,319,217,266],overhead:163,constantli:113,clemen:[190,184],offer:253,a2xb2xf4:[119,302],"\u00fc\u00e7oluk":307,grassmannian:[298,77,180,287,99,241,306,225,35,52],finitecryst:139,recursive_speci:161,is_lyndon:[231,42],braueralgebra:186,coeff:[12,286,283,6,201,248,141,68,260],depreci:306,tell:[283,287,130,42,160],ret_rig_con:[113,109],set_partition_ord:242,reiten:[304,163],rerun:184,sampl:[155,286,143,259,6,142,291,243,35,295],is_geometr:65,lirmm:307,a000984:56,coldin01:[268,261],khp:77,fibonacciword:[312,42,307],endset:140,proven:[281,55,7,310,220,106,225,35,68,260,153],exist:[229,268,78,5,271,7,80,81,208,11,247,171,88,295,251,185,286,265,272,293,307,143,26,101,130,29,30,266,106,269,108,35,195,184,121,280,261,283,117,278,285,122,203,291,163,262,129,52,131,298,211,301,56,137,33,70,253,61,310,62,304,144,221,222,224,68,220,306],abadafd:42,input_nam:125,upper_covers_iter:[304,163],christoffelword:307,floor:[253,56,22,306,307,222,130,269],complexifi:228,profus:253,role:[13,253,306,11,293],maximal_subgroup:[228,160],is_transduc:184,fokko:199,parking_permut:128,tableautuples_al:301,sagaki:[11,218],intend:[283,222,184,208,186,163],devot:272,base_set:229,kh3:298,asterisk:285,skewpartitions_rowlength:211,"15a":80,intens:290,intent:[12,171,184,257],combinations_with_replac:171,berlin:42,symmetricfunctionalgebra_witt:260,geometr:[253,300,211,276,306,311,221,65,52,189],freemonoid:231,time:[4,5,6,7,10,11,265,22,183,35,37,40,42,56,57,61,92,65,68,82,83,84,90,281,303,289,174,15,106,108,163,127,129,130,189,132,140,142,143,144,147,154,160,243,165,166,171,173,184,188,131,190,205,195,261,278,201,317,206,207,209,217,218,220,221,208,244,247,310,260,269,253,272,256,307,259,21,266,276,277,280,285,286,290,291,293,298,301,304,306,309,101,311,319],push:[269,101],"3113a1":42,labelledorderedtre:[30,285,84],mathrm:184,breadth:[84,147,207],combinatorial_map_wrapp:20,chain:[185,301,0,160,180,307,7,198,184,29,304,122,231,311,163,189,132],affinepermutationtyp:287,dynkindiagram:[250,227,119,240,291],per:[195,268,42,305,208,144,141,146,68,173,132],test_allcomp:140,"_states_dict_":184,baxterpermut:18,duali:259,kleitman:163,sga5:61,sga4:140,decid:[269,287,7,184,65,163,130,189],sga3:61,number_of_ssrct:162,decim:[176,56],column_stabil:[7,301],vee:[259,291],decis:253,x03:27,x02:27,golberg:61,bell_polynomi:171,"0x7f8fbe3adb90":[],shape_cor:180,binary_heap:285,esoperesteicietserepos:42,sixvertexmodel:223,lrt:[84,48],pair_to_graph:[186,169],exact:[],bw88:285,seealso:322,tensorproductofcrystalsel:[21,26],cdddcddccddcdddc:307,solver:[],left_rot:285,unsupport:[298,163],iter_morph:59,"proven\u00e7":311,rstan:[256,163],worddatatyp:[36,150,271],setup:275,prevent:[84,283,59,56],cartantypefactori:[276,291],minimal_period:[231,42],compens:[253,218,243],cell_complex:163,sign:[],tullio:286,lazili:147,tp_krc:[55,153,310],current:[228,157,180,163,165,241,84,141,11,269,207,13,170,295,90,266,175,281,286,123,272,256,217,22,259,26,184,21,183,188,218,109,190,205,111,243,276,277,0,117,285,303,122,296,203,291,125,127,262,82,52,132,53,319,301,302,271,305,306,140,61,142,62,143,263,293,68,153,225],hcosp3:4,mr0560412:199,soicher:[137,88],ground:[322,80,218,286,272,26,102,185,21,186,195,278,203,295,319,211,137,305,306,308,61,142,144,57,68],ordr:185,is_quasigeometr:65,partitiontuples_s:293,find_three_factor_product:[195,251],langl:277,reduced_rauzy_graph:42,kboundedquoti:[283,77,298],honour:[167,89],l_prime:218,modif:[42,30,48,102,84,220],to_undirected_graph:[30,285],address:146,ratio:[276,307],along:[72,160,293,82,11,246,169,150,128,90,286,256,307,143,186,269,205,35,273,276,283,284,285,288,291,159,163,107,52,301,137,306,61,180,315,222,318],s14:7,steiner_quadruple_system:[137,129,17],kr_type_e6_with_categori:106,root:[],designs_from_xml:125,queue:84,gyration_orbit:212,coeff_pi:[162,140],tree_root:90,type_c_affin:44,commonli:[253,272,305,306,140,184,101,68],cores_length:99,krtableauxspinel:281,subfactori:56,prefer:[160,22,259,7,61,287,257,122,283,205,128,130,132],twelve_n_minus_ten:129,fake:[290,201,147],i_k:[277,19,169],gradedhopfalgebraswithbasi:140,wybourn:160,abbcbba:42,polyhedral_r:26,zs98:209,upper_dyck_word:[185,256],cluster_vari:319,familar:165,necdet:307,order_complex:163,peopl:[253,289,272,78,182,147,66,316,35],claus:253,cplex:[137,163],ip2:185,ip3:185,visual:[],appendix:[283,128,256,218],dualiti:[165,272,239,305,6,238,140,201,29],ip4:185,is_prefix:[150,42],claud:163,easiest:[276,286,285,184],"thi\u00e9ri":253,as_digraph:84,kleber_tre:[207,310],category_of:201,pierifactors_type_b_affin:[73,225],koornwind:218,pretend:225,hs3t2:4,whatev:[83,190,217,269],chainposet:[29,189,163],webster:293,problemat:253,a090014:56,partition_of_a_set:229,a090016:56,a090010:56,encapsul:[141,184,293],a090012:56,a090013:56,hidem:174,crystal_of_letters_type_d_el:290,smirnov:68,kostkafoulkespolynomi:46,return_touch:256,is_crystallograph:[44,73,232,233,45,235,236,237,238,239,13,227,252,234,194,32,119,204,302,287,69,291],"_join_matrix":304,restricted_growth:118,series_ord:[316,289],etingof:61,p213:286,tumarkin:35,"3majorindexmathnachr":286,p217:304,write_final_word_out:184,parameter:253,direct_product:0,keepkei:191,associahedron_class:24,r2l:[286,61],"23d":80,dict_to_list:74,spot:[276,128,90],a006318:56,succ:[143,276,147],to_dominant_chamb:143,date:173,data:[],orderedalphabet:[176,307],harmon:[128,256],partitionalgebra_rk:169,quot:68,quadrant:256,ruskei:[62,33],reflection_group:69,best_known_covering_design_www:[266,173],finitewordpath_square_grid_tupl:311,callabl:[],skolem:266,weight_in_root_lattic:221,ordered_alphabet:286,sciencedirect:[195,212,162,306,7,286,185,262,285],scalar_product_matrix:75,int_as_sum:251,selftranspos:222,usemap:[285,256],subsetspecies_class:273,oa_8_76:268,jin:203,infint:42,toru:[52,82],tulp:301,"7bd":80,djm:301,directive_vector:311,"_o__":285,ramanujan:[306,101],baxterpermutations_al:18,tt3:30,tt2:30,tt1:30,submultiset_:74,exot:160,nation:304,one_dimensional_configuration_sum:[21,11,218,310],row_length:211,to_tableau_by_shap:286,crystal_test:296,revers:[75,5,162,293,7,241,84,247,141,218,13,269,253,286,272,256,307,22,184,21,190,113,42,115,119,122,317,271,20,130,189,301,214,287,58,140,61,62,220,68,153],revert:[7,140,42,217],separ:[276,195,265,158,180,60,184,241,21,321,176,125,262,150,251],finitewordpath_hexagonal_grid_cal:311,weak_exced:[286,256],register_as_coercion:61,symbolicr:190,type_f_affin:194,wolfram:[306,144,7,171,286],compil:244,g21d:13,weylgroup:[277,112,77,143,291,199,61,82,180,313,218,121,163,205,250,47,225],tamariintervalposets_s:185,antoin:209,semistandardmultiskewtableaux:117,bll:[41,78],is_gale_rys:130,tableaux_al:[7,301],hcd:173,internet:[253,230,269,56,101,311,266,81,125,47,173,17],formula:[228,33,12,162,6,7,165,82,306,11,171,310,260,43,253,286,254,272,48,26,185,187,218,108,35,0,115,285,201,122,296,52,319,211,301,305,70,140,61,142,92,312,221,222,68,58,225],bla:[180,276,317],apparit:111,crystalofnakajimamonomialsel:221,is_subword_of:42,million:5,envelop:269,unpublish:225,coerce_to_sl:295,depth_search:147,"___":[128,2,256],chevi:170,hc3:4,to_standard_list:180,reisner:286,horan:129,recom:269,hamel:[42,307],unavoid:[258,253],recov:[253,303,55,256,276,180,24,6,101,142,220,218,147,163,82,243],open_interv:[304,163],gordon:[306,173],"79a":80,cocorn:[306,7],alcov:[],balanced_incomplete_block_design:[137,266,268,80,17],oper:[],tensor_product_of_kirillov_reshetikhin_cryst:[153,310],sidon_set:206,plot_directive_vector:311,onc:[228,268,160,7,174,269,253,286,296,0,22,184,266,176,205,195,40,42,283,291,163,295,189,304,287,306,61,144,147],tribonacci:[5,311,307,56],"0410366v1":272,cyclic_permutations_of_set_partition_iter:229,tamari:[],bitableau:61,bbaaa:42,satta:178,hadamard_matrix_www:81,open:[256,283,306,125,7,217,198,163,127],lexicograph:[],cogood:293,hyperoctahedral_double_coset_typ:286,breviti:296,connan:253,convent:[75,76,78,6,7,165,321,218,310,16,173,281,93,254,293,143,264,21,35,276,42,253,117,119,122,296,290,291,163,127,295,211,301,305,306,308,61,142,180,144,313,286,224,69],abcbdba:42,duval:42,twelvefold_wai:171,paramt:247,v_4_1_bibd:266,a002113:56,a002110:56,conveni:[160,253,276,24,6,184,291,295],"mass\u00e9":42,to_hexacod:84,multiskewtableaux:117,is_ident:5,shift_right_transduc:184,column_sum:315,rootspaceel:[143,155],unimelb:61,monomial_or_zero_if_non:141,translation_factor:[277,291],rzn:77,to_unmarked_list:180,jcome:306,arug:281,arun:[186,218,61],sai:[228,268,5,293,7,306,184,269,253,93,254,256,307,22,48,2,27,29,30,186,276,42,283,115,286,296,317,291,163,262,129,211,58,140,218,220,65,222,68,70,153,225],nicer:[184,42,20],int_copr_on_f_via_m:272,sac:128,completion_by_cut:163,argument:[229,205,235,236,293,7,241,184,171,150,16,269,43,281,93,20,272,179,257,22,309,27,52,29,186,311,176,190,191,114,40,42,253,115,119,317,291,163,206,207,262,166,130,189,301,300,208,256,303,137,151,70,307,308,140,92,143,220,231,147,286,68,82,306,180,154],integrablerepresent:101,allen:52,saw:[253,42],allei:62,linz:[316,78,182,289,66],"__builtin__":[231,147],edge_label:[276,254,264,143,112,221,217,184,310,288,106,290,11,108,296,207,52,90,132],destroi:253,tableau_class:7,"gr\u00f6bner":253,nonstandard:[286,78,241],note:[5,6,7,13,14,320,43,19,22,26,29,30,34,35,37,42,262,52,56,58,59,61,141,65,68,69,70,74,268,78,81,87,88,90,286,102,106,108,119,122,163,130,189,133,137,142,143,146,147,154,12,160,243,168,169,171,173,180,48,184,188,190,205,195,200,201,203,207,208,287,218,228,229,237,238,239,240,241,269,253,254,272,256,307,258,21,276,277,283,115,288,296,291,298,299,304,305,306,319],goodman:228,p_automorph:265,nota:277,take:[228,229,268,2,5,6,7,277,82,295,84,130,101,172,0,171,89,262,269,312,253,286,297,20,272,256,307,143,259,260,309,48,26,27,15,21,186,218,190,191,37,293,195,184,40,42,283,115,285,201,296,203,291,163,9,127,128,205,52,298,208,212,242,304,287,306,140,61,92,258,144,146,220,222,223,290,167,68,69,154],phi0:[265,106],koskta:[92,46],"__1____":84,noth:[276,286,289,84,285,7,140,81,20,30,220,184,163,190],lint:88,compositionspeci:91,compress:[11,42,125],abus:[277,143,259,70,243,140,283,291,163,170],to_brauer_partit:186,homepag:272,c333c33cc33c333c:307,latticepolytop:[253,47,158],b2p5:[19,169],subinterv:7,quasisymmetric_schur:[140,272],badc:42,increasingintarrai:87,"0008073v2":7,preambl:184,apply_permutation_to_lett:42,translat:[5,208,11,247,253,93,143,26,184,266,276,277,40,203,291,163,207,241,132,304,70,218,142,180,313],m_list:272,a000217:56,jacka:309,a000213:56,affinecrystalfromclass:[265,263,106],save_design:125,finitewordpath_all_iter_with_cach:311,descents_composition_first:286,tensor_product:[275,281,55,26,21,296,203,153],xml:125,e_1:[5,93],slow:[276,286,208,78,137,23,306,140,241,257,68,173],to_tensor_product_of_kirillov_reshetikhin_tableaux:[104,220,55,310],e_6:291,ambient_dict_pm_diagram:106,content_of_marked_head:180,group_semidirect_product:241,transact:285,e_8:291,activ:[253,184,90],otim:68,equidistantli:184,bubbleswap:288,symmetricfunctionalgebra_zon:309,wilei:268,carolina:300,sum_i:[68,201],between:[],krttorcbijectiontypea:[113,85,103,105,10,109],krttorcbijectiontypec:[103,104,255,181],krttorcbijectiontypeb:[104,10],enumeratedmultiset:151,"0x7f8fd3ad0758":[],outer_rim:306,"import":[],equadiff:253,combinatse8:66,straightforwardli:259,requir:[268,4,5,243,7,241,84,11,207,171,88,260,253,289,272,143,99,101,266,311,188,108,191,35,276,195,184,285,201,122,317,163,127,129,52,319,212,137,205,218,62,258,144,146,66,68,24],prime:[268,80,81,208,247,171,88,43,253,307,100,266,176,111,195,0,278,56,306,312,144,65],abbabaabbaababba:42,tikz:[311,93,256,184,185,108,52],combinations_set:15,kr_type_e6:106,roger:306,xmax:311,f4xa1:160,e_k:5,where:[12,5,92,6,7,11,14,102,16,43,19,20,22,23,26,27,29,30,183,34,35,39,40,42,49,262,52,56,58,59,61,62,63,65,66,68,70,225,74,75,78,80,81,82,83,84,88,90,281,93,0,99,100,101,15,18,106,108,111,122,163,127,128,129,130,132,133,137,140,141,248,143,144,147,149,151,155,160,161,162,125,164,165,166,168,169,268,171,173,178,180,184,185,186,187,190,191,193,195,261,278,201,203,205,9,207,297,211,214,287,216,218,220,221,222,223,228,229,230,322,241,242,247,249,269,253,254,272,256,307,258,259,260,198,21,266,276,277,280,283,115,285,286,288,296,293,172,282,298,301,303,305,306,308,309,310,311,313,315,319,243],cells_by_cont:122,isabel:65,euclid:[262,306],pennsylvania:[128,256],b51z:283,aabbbaababba:42,rctypea2even:310,abaabaababaabaabaababaaba:307,ubiquit:228,graphpaths_common:200,positions_of_double_ris:256,shape_bound:180,to_non_decreasing_parking_funct:[2,256],x20:27,x22:27,spars:[133,261,304,216,141,163,260],sortabl:[48,184],amort:[22,127],cycle_index_seri:[72,230,41,78,1,66],screen:205,clayton:266,register_coercion:283,oa_find_disjoint_block:144,power_sum:171,integermodr:[306,299,303,293],classical_weight:[281,220,55,265],plot_ls_path:143,top_row:58,recursivelyenumeratedset_gener:[225,147],sage_object:[75,160,5,6,82,171,173,93,148,182,184,90,35,40,199,288,291,302,56,70,217,311,312,65,66,149,319],right_special_factors_iter:42,numerantium:62,e_one_star:[5,93],cospac:143,s0097316509001745:162,twin:[18,247],anti:[272,143,283,140,218,201,21,203,11,147,26],cycle_tupl:286,hyperplan:[155,277,276,143,241,144,291,247,205,295,88,132],list_of_standard_cel:180,to_lowest_weight:220,armstrong:143,isomorphic_substructures_iter:[137,146],ordered_partition_of_a_set:242,lazypowerseriesr:[253,289,78],west:[311,306,7,52,256],clear_cel:0,breath:132,finite_differ:[312,231],affinegrothendieckpolynomi:77,balancedincompleteblockdesign:266,lex_less:312,reflex:[111,229,42],oa_20_416:[144,268],benoit:308,combinations_iter:171,thousand:[253,306],resolut:[5,30],temperley_lieb_diagram:186,bf02115811:163,rootlatticer:[155,277,276,143,6,240,234,218],bonjour:151,tomer:43,former:[30,306,260,163],dyck_word:[253,311,256,306,185,269],xyxyxyxyx:311,left_multiplication_bi:288,count_11x10:184,ruedi:306,straighten:[180,306,293,82],outgoing_path:200,functorial_composit:[294,78,66],stupidest:253,"s\u00e9bastien":[231,42],characteristic_symmetric_funct:256,to_kirillov_reshetikhin_tableau:106,canon:[5,6,140,84,167,141,225,13,87,88,89,90,253,93,296,293,259,30,106,276,40,280,283,285,201,203,291,163,301,137,287,217,61,222,317,243],quiet:137,blah:303,partitionalgebra_gener:169,combinatorial_map_trivi:20,ambient:[],ascii:[44,73,45,235,236,237,7,239,240,167,13,227,89,252,256,180,234,108,194,32,238,117,122,204,301,302,224,291],"__init__":[275,256,21,283,185,214,147,130,269],econom:253,character_t:[205,283],binari:[],is_isomorph:[286,254,137,306,221,217,264,300,304,198,106,296,11,108,163,149,310,112,90,132],swapoper:288,arrowopt:311,laurentpolynomialr:[199,142],cartantype_with_superclass:302,lyndonword:[98,187,272,42],iv3:130,extern:[],defn:140,k_weight:7,"31v1":4,maximal_part:68,isotop:0,cyclespecies_class:159,ep2004:256,motzkin_word:269,cyclic_permutations_iter:171,char_from_weight:228,a002808:56,vacanc:[220,168,310,109],dimension:[228,160,5,321,141,61,247,88,281,93,143,101,21,106,35,275,276,277,40,253,286,291,163,207,305,58,218,310,11],p0check:82,proveabl:65,"_to_cycles_list":286,sv13:65,resp:[277,302,42,143,99,6,286,241,18,198,141,163,127,130],sum3:289,sum2:289,rest:[88,42,280,235,117,48,30,111,236,272],gdd:[],next_stat:[113,85,255,181,197,184,103,104,105,109],"0605262v1":27,kqb:77,ser1985:42,is_cad:42,q_hook_length_fraction_2:285,lmbda2:131,instrument:20,lmbda1:131,exercis:[],around:[113,42,56,283,253,83,298,244,291,163,171,68,12,173],categorif:293,is_semistandard:[122,7],"_active_st":90,partitionalgebra_pk:169,identity_morph:59,vals_in_row:0,kink_coordin:52,is_quasi_difference_matrix:[57,268],exploit:[253,20],integ:[],"_sym":68,labelledrootedtrees_all_with_categori:48,left_box:220,inter:[],manag:48,obstruct:37,integer_vector_weight:114,fbncc10:56,number_of_unordered_tupl:171,britz:163,assertionerror:[6,201,184,142,144,141,317,218,102],max_support:225,saliola:[93,312,75,272,42,307,59,140,61,201,288,231,176,286,315,192,52],coxeter_matrix_as_funct:152,definit:[],evolv:[40,269],y20:27,notabl:[212,78],permutationgroup:[158,301,0,7,317,87],refer:[],deabc:[5,148],besselj:47,power:[],vivian:[185,286,285,142],is_schur_posit:[298,68],ration:[155,75,77,4,5,6,238,165,82,83,214,141,11,171,142,295,269,43,91,253,286,254,280,179,143,259,78,27,161,186,188,218,190,191,309,193,276,277,184,41,42,196,283,297,222,285,201,289,291,163,294,128,205,115,272,298,319,256,305,140,61,101,92,180,234,65,66,68,69,71],a000027:56,partitions_constraint:306,dumont:253,orientation_preserv:40,is_imaginary_root:143,stong:222,dualli:6,stone:269,tensorproductofkirillovreshetikhintableauxel:[55,153],acd:80,add_stat:184,joyner:[137,81,171,88,130,43],crystal_morph:[296,10],sx2:241,unbounded_map:20,graph_path:200,neighbor:[276,40,58,7,184,122,211],act:[229,5,293,7,165,241,218,170,88,260,281,93,272,143,99,184,21,183,106,205,276,0,283,286,122,317,291,163,172,82,212,304,287,306,309,61,142,92,180,198,313,69,225],luck:128,invert:[],cbbbbaaa:42,effici:[228,77,78,7,11,171,269,253,286,265,143,184,251,277,42,283,291,163,12,189,132,301,57,62,312,146],ljcr:17,in_highest_weight_cryst:108,test_sn1:61,test_sn2:61,test_sn3:61,setpartitionsik_k:169,problem2005:56,worddatatype_callable_with_cach:[311,231,36],orbit_decomposit:172,hep:[68,272],insert_word:7,her:160,positive_roots_parabol:143,"_prefix":[92,283],philadelphia:[128,256],to_gelfand_tsetlin_pattern:7,alcove_path:132,italia:42,is_initial_interv:185,element_print_styl:290,abcccabbaabcccabbaabcccabba04883048:42,witt:[],st2003:127,furthest:256,conclud:[276,291,61],episturmian:[312,42,307],warrington:165,inner_s:122,grinberg:[286,272,22,285,140,185,122,163,68],pull:[281,220,106,81,27],tripl:[301,0,160,5,278,285,80,184,137,266,11,247,172,35,88,17],transition_funct:[184,90],to_integer_list:42,monic:222,index_set:[155,232,6,241,167,11,170,281,286,254,143,26,21,106,205,275,277,119,265,203,291,243,9,127,296,132,302,287,220,221,313,290,69,225],"propri\u00e9t\u00e9":42,is_dominant_weight:143,seminair:256,is_crystalograph:[119,291],to_partit:[22,99,229,306,256],get_num_cells_to_column:168,creat:[214,228,276,229,268,4,48,243,7,282,321,241,83,84,141,269,169,13,14,249,171,90,242,281,93,272,256,21,22,259,99,160,182,186,184,130,29,30,183,188,173,121,309,155,314,113,40,42,253,283,115,119,292,163,49,207,295,220,52,189,132,299,258,212,56,137,70,308,140,218,310,92,180,198,221,146,65,322,222,223,286,69,306,153],startopt:311,certain:[228,78,7,241,141,225,171,269,253,254,256,180,186,108,34,35,40,283,285,122,317,163,130,319,33,74,217,61,310,222,68],semistandardskewtableaux_shap:122,arith_bell_numb:171,affinefactorizationcryst:112,cherednikoperatorseigenvector:[218,82],vol9:222,"_weight":66,mathematik:305,product_transduc:184,abbababba:42,lehmer:[287,286],"melan\u00e7on":307,is_unit:193,characteristicspecies_class:72,shuffleproduct_overlap:34,extendedaffineweylgroupfw:241,congress:283,vrc_elt:[76,310],from_shap:106,ncsymdualbas:297,vocabulari:127,randombipartit:130,solution_dict:253,multicharg:[306,7,301,293],plot_root:[143,276],hamalainen:0,negative_root:[302,143,235,236,237,238,239,240,234],nakashima:[281,254,21,106,290,50,296,153],recoils_fatt:286,raphael:33,to_unmarked_standard_list:180,mass:307,adam:[258,228,68,272],paritit:115,dyer:199,adab:5,cpu:[37,253],waiver:269,conjugates_iter:42,sci:[312,42,307],crystal_of_letters_type_e6_element_du:290,heights_of_addable_plu:106,illustr:[253,40,42,21,306,307,184,20,311,190,141,61,147,149,291],clearcacheonpickl:[155,295,205],improperli:114,ferreira:166,smallest_base_r:[234,259,295,238,240],order_filt:[304,163],"0x7f8fd3ad0f50":[],infiniteword_class:[192,231],has_left_conjug:5,sympo:205,tail:[289,269],emptysetspecies_class:72,kashiwara93:254,introduc:[165,208,141,88,253,286,112,148,101,185,108,310,40,283,285,296,293,262,241,211,212,306,140,61,142,222,68],is_empty_row:0,corollari:[268,24,7,218,101],normalis:81,f_string:[281,254,76,26,264,21,220,221,203,11,108,9,296,132],dual_classical_weyl:241,candid:[269,184],fundamentalgroupglel:313,sc4:126,elena:61,strang:[5,22,286],sc3:126,from_polynomi:[272,283,322,218,142,68],eplu:[41,78],standardskewtableaux_s:122,find_product_decomposit:[251,131],harri:[228,35,119],taquin:[122,7],pbd:[195,268,57,278,80,144,266],to_signed_matrix:223,completedyckword:256,small:[],sano:[5,93],inner_plethysm:[283,68],lauv:[186,229],merged_transit:184,quicker:276,automorphism_group:[72,318,230,246,137,284,159,107,273,71],qmt:35,past:[175,228,163],number_of_vallei:256,mols_18_3:268,pass:[229,276,6,20,242,171,88,260,269,281,286,272,256,180,182,220,184,29,30,183,113,40,253,283,285,119,291,163,207,303,70,217,218,142,311,143,144,147,319,306,153],suboptim:111,set_mut:291,is_mutation_finit:[35,319,217,120],trick:[276,291,184],deleg:290,xor:184,composition_sign:126,number_of_loop:308,section:[229,158,77,78,5,6,7,208,84,101,247,171,88,260,43,185,286,289,272,256,307,22,309,182,27,29,30,106,218,190,195,184,42,253,283,285,122,291,163,319,0,140,61,142,180,66,316,68],delet:[253,133,36,211,304,99,195,174,217,168,184,147,151,306],abbrevi:[68,285,241],is_irreduc:[228,73,232,233,45,235,236,237,238,239,13,227,252,44,234,194,35,6,32,119,204,302,291],spinsminu:[50,263],kr_type_cn:106,kacpeterson:101,method:[],descouen:283,cluster_se:319,hash:[12,93,285,30,163,171],boxed_entri:58,plot_project:[5,311],centralizer_group_card:222,find_thwart_lemma_4_1:[195,251],max_entri:[58,7,122,166],inher:257,"_integers_from":[182,78],to_stat:184,worddatatype_char:[231,271],acdabda:42,make_leaf:285,prior:[183,184,176],social:286,action:[],via:[],shorthand:[272,283,115,285,165,61,82,288,186,231,313,52],dictionary_of_coordinates_at_residu:180,vii:[195,160,236,278,308,80,208,286,309],from_catalan_cod:256,initialsolut:133,emptyset:321,abdec:148,decrement:[22,286,212],coercion:[91,83,286,280,196,283,309,322,140,61,241,92,174,141,27,294,68,260,71],select:[253,286,301,160,306,31,184,46,144,163,190,207,171,15],codingofrotationword:[312,42,307],unlabelled_tre:[30,48,285,84],mors:[298,112,42,77,56,180,306,307,7,92,312],is_distributive_lattic:304,pch2013:185,mac95:211,to_set_partit:[186,169],automata:[],catabol:7,kl0:[218,142],cluster_class_it:319,bruhat_smal:286,more:[5,92,6,7,11,320,43,265,22,26,30,34,35,37,176,42,262,55,56,57,58,74,61,62,141,65,68,70,75,76,77,78,81,82,83,84,88,281,93,100,101,102,106,108,117,122,163,127,129,132,137,140,142,143,198,146,153,158,160,125,164,165,168,268,171,180,48,184,185,186,190,205,195,261,278,201,203,9,207,211,218,220,33,224,228,208,247,260,251,253,254,272,256,257,144,264,21,266,269,276,277,0,283,285,286,296,290,291,293,295,299,301,303,304,305,306,307,310,311,312,313,317,319],reachabl:[320,184,132],door:102,tester:142,c_i:291,b_57_70:88,display_step:[220,55],an_el:[155,241,77,234,293,7,240,166,84,141,11,171,16,253,143,259,99,48,21,188,218,176,193,114,283,115,285,201,317,163,206,295,47,298,208,301,287,74,308,140,61,142,180,198,313,147,33,82,243,225],chromat:[68,163],caca:90,bian:256,partition_pair:[68,201],multiset:[286,178,272,137,57,74,48,15,144,222,34,171,151,282],cach:[75,78,6,141,260,269,43,36,143,184,266,205,276,277,283,199,119,290,291,159,54,56,304,311,231,146,65],oa_and_ov:195,delattr:291,endpoint:[143,164,11],by_recurs:319,worddatatype_list:[311,231,150],a1xa1xa1xa1:160,klr:108,partitiontuples_al:293,setpartitionsak:[186,19,169],affine_weight:106,sensu:140,dobinski:171,a083104:56,a083105:56,a083103:56,accept:[243,13,171,269,253,286,272,179,30,259,184,21,35,277,42,317,163,262,306,311,198,231,68,69],autumn:42,height_funct:212,schoolgirl:80,qs3g:61,supremum:[229,42],huge:[146,184],abcdef:[311,59,231,42],hugh:[253,35,88],direct_sum:191,transition_matrix:[92,83,68,280,298],longest_periodic_prefix:312,cline:321,simpl:[],determine_alphabet:184,abcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd:42,seoul:221,referenc:90,col_m:272,use_multitape_input:184,perrin:42,variant:[253,195,259,184,20,142,269],exterior_pow:228,simple_coroot:[228,276,302,155,143,259,6,218,142,234,167,243,13,295,89],mendez:78,q_binomi:[172,43,46],state2:184,blockdesign:[137,266,88,125],plane:[253,195,268,212,276,137,57,308,266,311,144,291,247,35,88,285,173],pattern_posit:286,abacbacbab:42,get_solut:183,partitionsinbox:306,circumst:[30,48],list_of_designs_proc:125,is_canon:[87,317],"__name__":176,binary_tre:[185,285],infiniteword_callable_with_cach:[311,231],tau123:0,matrixspac:[253,303,158,212,180,163,171],integerpartit:[29,304,189],kash03:221,arrangements_msetk:286,paraboloid:101,ito:[5,93],constitu:[299,184],ith:78,partitions_parts_in:306,active_st:90,kr_type_cel:106,paper:[],scott:62,digraph_fast:132,number_of_solut:40,lt_element:[50,290],cartantype_crystallograph:[302,234,235,238,239,167,291,13,89],coarser:[22,272,115,140,201],coarsen:[229,115],hzq:283,abbbabbaabbabbba:307,bypass:[190,319],onelin:[5,286],superflu:[190,184],cyclicpermut:[171,286],infinitycrystaloftableauxtyp:296,b1xb1:160,fsmq1:184,amelior:286,coeffic:253,gadget:276,has_fil:184,vect:282,shard_ord:300,dyckwordbacktrack:256,full_group_bi:184,cambrian:[300,285],integer_list:[22,306,130,269],eventu:[253,42,143,306,163,269],kirillovreshetikhinfromlspath:11,one_cyclic_til:247,achiev:[253,195,256,258,260,99,218,277,61,82,184,147,66,310,127,14,68,249,130,269,291],is_eras:5,category_realization_of_par:[298,297,241,272,77,305,201,140,68],found:[228,268,78,5,83,260,173,253,286,289,0,180,24,182,184,104,266,251,287,35,41,42,199,46,209,56,304,151,217,311,22,144,66,316,319,69],pathopt:311,setpartitionsikhalf_k:169,denni:286,aval07:212,monoton:[37,212,101],procedur:[84,262,253,7,43],slowdown:146,part_scalar_jack:309,oa_from_vmt:144,reduct:[62,300,320],ftp:68,incidencealgebra:193,fibonacci_sequ:171,square_gridd:311,zsn:61,research:[253,283,310,16,163],bubbl:288,standardpermutations_avoiding_gener:286,hood:253,involutori:160,occurr:[42,306,184,312,225,190,150,90],suter_diagonal_slid:306,gaski:56,oa_9_135:268,graycod:[190,184],promotion_on_highest_weight_vectors_invers:106,polyhedra:24,skewpartitions_al:211,believ:228,prefac:205,transition_function_dictionari:90,is_untwisted_affin:[44,73,45,291,167,204,194,227,89,252],cc13:286,vanleeuwen91:117,major:[12,286,256,42,253,22,7,20,137,301,272],taocp2a:102,abaabb:311,qsort:146,number:[],evolut:40,with_lin:321,compare_graph:132,xin:128,forbidden_border_label:52,y02:27,differ:[],exponenti:[253,289,42,78,306,56,322,218,242,244,65,66,293],dft:61,schubertpolynomialr:[214,314],illeg:286,a5xa2:160,k_charg:180,kschur_with_categori:298,relationship:39,bigomega:56,escholarship:7,cominuscul:313,abbaab:42,standardskewtableaux_al:122,a000008:56,consult:269,a000007:56,a000004:56,a000005:56,a000001:56,produit:272,"labb\u00e9":[231,42],aaa:[5,311,59,42,312],ternary_expans:190,aac:5,aab:[5,59,42],aam:229,to_neg:143,column_length:211,reus:[167,40],"_mobius_function_from_matrix":304,a41:167,arrang:[253,276,229,158,56,160,286,186,171],attacking_box:12,multiplicativebas:140,psychopictor:311,comput:[],macaulai:163,find_wilson_decomposition_with_two_truncated_group:251,qpz:83,packag:[185,319,279,256,217,137,283,199,253,165,120,46,51,184,125,170,35,88],qpy:83,from_min_height:256,mupad:[253,114,229,280,242,22,283,117,286,143,122,291,127,69,306,269],amritanshu:[222,282,43],waff:225,scaling_factor:[70,220],long_element_hardcod:205,zeilberg:[253,308],equival:[228,33,268,160,5,7,241,141,184,247,88,260,269,43,185,286,272,256,307,22,98,78,101,29,30,186,106,190,205,35,277,42,253,115,285,201,120,287,291,163,208,52,301,298,319,212,56,305,306,308,140,61,310,62,144,222,68],self:[4,5,6,7,11,13,14,227,16,265,20,22,23,24,26,27,29,30,183,32,35,40,42,49,50,52,55,56,58,59,61,92,66,68,69,70,225,74,76,77,78,82,83,84,89,90,281,93,289,0,99,101,18,106,108,111,114,116,117,119,120,122,163,126,128,132,137,140,142,143,198,147,153,155,160,161,271,165,166,167,141,170,171,173,178,180,48,322,184,185,186,188,191,192,193,200,201,203,205,9,207,297,12,211,212,214,287,217,218,220,221,222,223,224,228,229,232,233,234,235,236,237,238,239,240,241,242,246,150,249,269,254,272,256,307,258,259,260,264,21,275,276,277,280,283,115,285,286,288,112,290,291,293,295,296,298,301,302,304,305,306,308,309,310,311,312,313,314,315,317,319,243],internat:207,also:[],exposit:[305,58],fonction:[272,43],from_non_decreasing_parking_funct:256,analogu:[],from_kirillov_reshetikhin_cryst:281,tightpag:[127,93,220,52,108],ct4:212,grassmannain:287,labelledbinarytre:[185,84,285],column_cryst:275,is_group_divisible_design:57,plai:[253,74,276,5,306,6,293],plan:[253,261,56],northwesternmost:[306,7],"0x7f8fbe3a7de8":[],first_zero:272,cccc:47,linearextensionsofposet:[198,163],ct3:13,cover:[],recherch:42,demazur:[228,254,26,218,142,21,106,291,132],ext:125,completedyckwords_s:256,words_over_alphabet:59,exp:[171,322,306,184,293],transition_hook:184,basic_imaginary_root:143,kr_type_bnel:106,gold:253,designtheori:[137,88,125],kr_type_cn_with_categori:106,affin:[],riggedpartit:[220,168],caruso:43,access:[],indexerror:[303,301,42,56,74,7,130,30,16],permutohedron_smal:286,solut:[],rees93:195,factor:[],bernstein:[68,140],tsuboi:310,abelian:[93,0,42,57,306,266,311,247,144,190,43],adcd:184,apply_isotop:0,combinatorial_class:171,"__classcall__":[171,201],ambient_dim:24,mapletech:42,map_label:[84,285],nonnest:143,lm2004:306,lm2006:306,split_nk:138,arxiv:[12,229,4,162,293,7,277,82,10,11,0,260,281,286,296,272,256,307,143,24,78,27,18,21,106,218,108,283,35,279,195,40,42,264,164,115,285,120,185,51,291,163,207,128,129,52,258,211,319,70,308,217,61,310,92,180,65,222,68,306,153,225],"7esteph":272,coord:[106,40],crc:[268,184],cclass:169,recompos:167,kill:[143,259,276],eigenvalue_experiment:218,nowher:0,partitionsrestrict:306,coarsest:[22,229],set:[],ser:[185,162,306,211,42],seq:[230,256,42,33,306,26,217,62,222,43],sep:[93,150],terenc:52,seg:[296,7],sef:286,see:[],sed:175,sec:[144,88],sea:7,leclerc:[272,42,4,162,165,68],sem:[185,283,286,212],contour:[93,42],analog:[272,143,162,306,7,26,140,285,301],lt2000:4,from_kbounded_to_reduced_word:[99,306],speed:[283,195,261,137,260,199,278,80,184,119,257,144,266,163,88,209,306,131,132],weyl_group_represent:11,topmost:[306,122,7,272],is_avail:[144,268,261],lascoux:[75,212,42,4,162,7,165,142,92,68,272],signatur:[286,75,287,21,108,50],classcal:171,finitewordpath_triangle_grid_it:311,incident:[137,272],matthia:253,frozenset:[163,184,102],max_lett:52,centralizer_group_cardin:222,extendedaffineweylgrouppvw0el:241,ht_grassmannian_piec:52,last:[5,6,7,11,16,43,19,22,24,29,30,40,42,262,56,57,59,61,92,63,65,66,68,74,268,76,77,78,80,84,87,88,90,286,289,282,98,99,102,106,176,114,119,122,145,163,128,231,130,189,137,138,140,142,143,198,147,151,154,155,160,125,164,165,141,169,170,171,173,178,179,180,48,2,184,185,186,187,131,190,205,195,261,278,201,317,206,211,212,287,217,218,224,228,322,237,208,242,244,247,150,269,253,112,272,256,257,144,264,21,266,276,277,200,280,283,285,303,291,293,295,298,299,301,304,305,306,307,308,310,311,312,126,319,243],opac:[5,93],inner_tensor:[283,68],is_key_tableau:7,idesc:286,pdf:[286,178,272,256,56,305,117,7,266,61,306,144,128,129,285,52,173,132],whole:[93,278,30,137,48,56,7,140,84,122,229,186,266],gh1993:92,highestweighttensorproductofkirillovreshetikhintableaux:153,debruijnsequ:33,load:[72,155,75,4,5,171,2,83,242,141,214,246,169,0,14,249,128,90,91,311,286,289,272,96,22,98,78,31,15,161,183,188,34,309,295,273,314,259,284,42,196,200,120,288,159,243,49,294,107,20,12,130,299,212,56,287,59,322,140,61,92,258,231,307,147,118,149,318,71],crystalofgeneralizedyoungwallsel:108,ddet:184,schedul:184,bistochast:286,northeastern:306,belg:93,rosa:[306,68,115],is_area_sequ:256,content_of_highest_head:180,etrt:61,is_difference_matrix:[57,268,131],belt:[306,319,293],chaptamari08:185,contraint:269,structure_const:52,calculu:[253,42,77,298,180,306,52],sinc:[228,229,160,7,165,81,241,242,168,11,13,170,171,269,253,93,265,272,256,21,22,48,101,30,186,106,188,276,277,184,280,283,286,287,243,207,20,130,132,258,302,0,304,305,306,74,140,311,143,222,68,69],ranks1:189,ranks2:189,combinatsu30:316,is_primit:[5,42],combinatorialclass_with_categori:[98,130],devis:283,nonexist:88,wordpath:[5,311],hurwitz:171,wheeler:42,aabbaabb:311,k_dual:[283,77],fund:[190,184],func:[182,222],q_catalan_numb:43,qdm_57_9_1_1_8:268,kr_type_a2:106,words_n:59,coxeter_transform:[143,304,164,163],composition_tableau:166,withreal:201,straight:[253,180,306,7,186,122,11,68,132],mlv:[286,75,272,42],mlt:10,error:[7,165,180,141,184,171,150,269,286,272,256,307,22,27,29,30,186,42,283,303,291,163,298,301,306,142,311,143,144,231,319],abaabaababaabaabaababaabaababaabaabaabab:307,robin:125,final_st:[190,184,90],earli:269,words_over_orderedalphabet:[311,59],action_on_affine_root:241,beautifulli:133,vol:[268,4,7,184,247,88,251,43,256,307,78,101,29,195,41,42,283,285,291,163,129,209,304,58,144,68,306],von:286,owen:35,gecseg:304,dlx_common_prefix_solut:40,vow:209,leaf_act:285,vanish:[100,184,43],decor:[37,54,58,20,168,291,163,16],irrelev:[253,277,243],obsolet:276,shorten:[306,300,285,184],u_n:65,holton:42,shorter:[42,143,283,306,119,140],funni:5,worddatatype_tupl:[311,231,150],ruler:206,kn2:106,kn3:106,lc_collat:175,staticmethod:171,transitivetourna:300,berkilggi:7,is_markov_chain:184,cover_relations_graph:163,legend_label:276,stack:[133,108],recent:[5,6,7,11,16,43,22,24,29,30,40,42,262,56,57,59,61,92,231,65,66,63,68,74,77,78,80,84,88,90,286,289,98,99,102,106,176,114,119,122,163,128,130,189,137,140,142,143,144,147,154,155,125,164,165,141,170,171,178,179,180,48,2,184,185,186,131,190,205,261,278,201,317,206,211,212,287,217,218,228,322,237,208,247,150,269,253,112,272,256,257,198,21,266,277,200,280,283,285,303,291,293,295,298,299,301,304,305,306,307,308,311,312,319,243],kelli:163,cocommut:[283,140,272],"0790v3":7,abaababaaba:42,elem:297,honor:[92,229,163],pickl:[304,283,306,231,147,13],person:173,u_1:65,i2k:140,expens:[228,253,4,309,83,188],rauzy_fractal_project:5,academ:[311,306],a_4:184,a_3:184,a_2:184,a_1:184,combinad:63,pernet:253,submultiset_sk:74,"____________________________________________________________________________________________________":261,combinat:[1,2,4,5,92,6,7,9,10,11,12,13,14,15,16,43,18,19,20,21,22,23,24,26,27,176,29,30,31,32,33,34,35,36,37,282,39,40,41,42,44,45,46,48,49,50,52,54,55,56,57,58,59,60,61,62,63,65,66,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,87,88,89,90,91,281,93,289,0,96,98,99,100,101,102,103,104,105,106,107,108,109,111,113,114,115,116,117,118,119,120,122,145,159,125,126,127,128,129,130,131,132,133,136,137,138,140,141,142,143,144,146,147,148,149,150,151,152,153,154,155,160,161,162,163,164,166,167,168,169,170,171,172,173,174,175,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,203,204,205,206,207,208,209,210,211,212,214,287,216,217,218,231,220,221,222,223,224,225,227,228,229,230,232,233,234,235,236,237,238,239,240,241,242,244,246,247,248,249,243,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,268,269,271,272,273,275,276,277,278,280,283,284,285,286,288,112,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322],wiskund:56,ducloux:199,qs5g:61,cavenagh:[195,251],affineschur:[283,77],cartanmatrix:[254,119,221,291,205,250,69],"_transposition_to_reduced_word":99,kn94:[21,296,290],bounce_area_to_area_dinv_map:256,"_index_set":101,"_parent":[150,269],input:[4,5,6,7,9,10,11,13,14,16,43,297,20,21,22,23,152,26,27,29,30,35,37,39,40,176,42,46,49,50,52,55,56,57,58,59,60,61,92,141,65,68,69,70,225,33,75,76,77,78,80,81,82,83,84,87,88,89,90,281,93,289,0,98,99,100,101,102,18,104,106,108,109,111,113,114,116,117,36,119,120,122,145,163,128,129,130,131,132,133,137,140,142,143,144,146,147,151,153,155,160,162,271,164,166,167,168,170,171,173,178,179,180,48,231,184,185,186,187,188,189,190,191,195,261,197,199,278,201,203,321,205,206,207,208,12,211,212,287,216,217,218,220,221,222,223,224,228,229,262,322,241,244,247,150,249,251,253,254,272,256,307,258,259,260,198,264,265,266,269,275,276,277,280,283,115,285,286,288,112,290,291,293,172,295,296,282,298,299,300,301,302,303,304,305,306,308,309,310,311,312,313,315,317,319,243],cyclespeci:[91,78,159,66],duplicate_transition_raise_error:184,inconsequenti:184,format:[253,286,184,211,304,303,143,23,163,80,101,208,180,90,125,247,131],coweight_spac:[6,243],subfield:88,intuit:[276,0],submodul:272,outut:166,combinatorialclass:[12,229,75,20,242,171,286,256,96,22,98,2,15,31,187,34,200,122,145,128,130,299,211,306,118,149],classicalcryst:[228,139],a_k:[19,169],q_factori:43,partitions_al:306,to_list:[211,301,180,306,7,293],parent2:290,parent1:290,a079928:56,ivan:209,trivari:184,encount:[185,84,256],get_plot_label:163,acknowledg:[],number_of_part:108,lss2009:225,tmwordtf:307,oval:195,ncol:[276,0],aabbaa:42,lower_binary_tre:[185,285],linear_order_speci:284,random_order_id:163,has_prefix:[150,42,271],crysstructschilling06:[220,264,310],symmetric_form:[143,277],recognit:217,qdm_33_6_1_1_1:268,gridlin:311,transitive_reduct:163,sixvertexconfigur:223,recogniz:184,machin:[],skewpartit:[117,211,306],semistandardtableaux_al:7,schutzenberg:[7,42],sutableaux:180,siffer:301,depth_first_search_iter:147,recoils_composit:286,foulk:[],cmap:[93,42,20],add_row:183,dg94:285,inhomogen:56,"_test_an_el":[29,163],hecke_algebra_represent:[218,82],bijectionlrt:[220,55,310],primarili:[122,117,65],"4629v1":68,"_global_opt":269,symmetric_group_action_on_valu:7,occupi:[180,7],span:[155,276,283,6,218,82,144,298,203,243,127,241],to_graph:[186,169,308,163],element_class:[12,293,82,84,141,171,269,281,286,289,178,21,22,48,185,30,106,176,205,111,280,253,285,317,163,50,297,298,214,304,306,74,218,180,198,290],wll_gt:22,socl:7,alternatingsignmatric:[223,253,212],submit:[173,17],custom:[],"_left_to_right_multiply_on_left":286,alternatingsignmatrix:[223,286,212],suit:[253,184,33],kirillov_reshetikhin_tableaux:106,"9bc":80,to_rigged_configur:[104,220,55,153,310],qqqt:[283,68],show_sequ:[319,217],subgraph:[37,137,253,163],jackq:309,zorglub:283,llmssz2013:180,simplic:[127,276,11,264,76],decomposit:[160,241,251,281,286,296,256,22,23,266,106,277,115,293,172,131,211,301,287,61,143,144,305],nonextend:241,contains_interv:185,link:[],partitionalgebra_tk:169,atom:[253,229,42,306,237,7,29,115],ling:195,line:[228,268,210,321,141,11,247,88,90,253,93,256,143,185,276,195,40,42,283,286,81,163,262,132,56,57,306,308,140,198],jackj:[283,309],simplestructureswrapp:149,is_noncross:229,acbcc:5,cii:119,intim:301,datad:[93,42],boxes_same_and_lower_right:12,hp2007:184,baba:42,map_coeffici:[283,218],min_part:[253,22,306,130,269,154],parser:125,lascouxpreprint:212,"char":[],krattenthal:[7,256],b_10_0:88,semistandardtableaux_size_inf:7,tensor_product_of_kirillov_reshetikhin_tableaux:310,jct:291,signs_of_alcovewalk:[277,218],invalid:[114,272,306,7,165,184,104,220,141,176,190,266],jcd:268,transcend:307,retract:[228,286,265,77,298,61,82,186,106,317,218,290],chain_polytop:163,a000069:56,finiteenumeratedset:[253,158,176,98,147,171,130,269],return_bipartit:[319,217],heights_of_minu:106,elementmethod:[298,277,297,241,272,77,143,305,140,218,142,225,201,170,68],lang:[175,163],qdm_25_6_1_1_5:268,lane:148,land:184,algorithm:[],duality_pairing_matrix:[272,297,140,201,165],rencontres_numb:171,to_virtu:[76,264,310],colinear:195,hello:182,code:[],partial:[228,312,7,141,244,87,253,286,256,307,22,40,0,285,291,163,295,52,56,306,62,180,146,65,68],finiteword_cal:[311,231],mal1993:272,finitewordpath_north_east_callable_with_cach:311,scratch:291,level_one_parent_class:301,essai:130,is_complemented_lattic:304,landscap:286,dynkin_nod:265,tamariintervalposets_al:185,cython:[],nondecreasingparkingfunctions_n:2,permissable_valu:0,theta_qt:[283,68],young:[],send:[228,165,241,14,249,320,286,254,272,256,143,260,185,30,34,35,280,283,285,201,49,297,298,305,306,140,61,258,220,313,287,68],sens:[7,241,84,168,171,253,272,256,143,184,21,35,301,40,41,283,115,285,122,163,132,298,211,212,140],"__str__":183,sent:[185,40,140],shape_comp:162,"0311382v2":258,irreduct:5,poitier:117,squareful:56,return_raising_chain:163,tri:[],northwestern:306,magic:253,qdm_45_7_1_1_9:268,multiplicativebasesonprimitiveel:140,fewer:22,"try":[228,133,40,311,253,160,276,24,163,286,61,269,62,30,144,146,184,125,69,306,131],wordpaths_al:311,edgecolor:93,impli:[185,184,253,143,58,7,27,166,29,186,65,171,68],partitionspecies_class:318,natur:[229,160,6,242,141,281,272,307,143,26,185,21,186,176,35,193,276,253,283,115,317,291,293,127,262,130,301,56,305,59,140,312,220,231,65,147,33,153],is_gequ:[304,163],nabla_piec:52,l2r:[286,61],le6:236,use_i:221,"____3____":285,odd:[253,286,319,212,56,308,306,7,140,310,83,106,247,50,88,260],y11:27,victor:[143,286,272],bk2001:256,weight_lattice_r:[276,277,254,76,264,259,221,218,310,21,106,203,11,108,9,191,296,132],ct1:[13,205,302],ct2:[13,212,302],evacu:[198,7,163],q_dimens:106,isobaric_divided_difference_on_basi:142,fundamental_weights_from_simple_root:143,richmond:52,combinatorial_algebra:[214,314,61,169],graphpaths_t:200,combinatorialalgebra:[214,314,61,169],obvious:[62,286,40],symmetric_pow:[228,160],cycle_typ:[253,286,68],hereditari:[],lee:[296,108,319],leg:[12,306,7,293],kt2003:52,crystalofnakajimamonomi:221,aut11:184,len:[12,229,268,2,5,162,163,7,180,84,130,269,169,0,171,128,161,207,253,93,36,272,256,217,22,98,303,182,48,184,102,185,30,172,187,90,205,37,40,315,42,283,271,200,285,119,46,122,126,125,206,127,50,231,209,52,189,132,311,319,211,212,56,137,286,216,74,140,61,310,304,143,144,63,307,147,66,223,224,293,68,306,153],l21:290,leq:7,l22:290,let:[5,6,7,11,14,43,22,26,29,30,34,40,42,55,56,57,58,61,65,68,225,268,78,82,87,88,281,93,100,101,106,108,122,163,127,130,137,140,142,143,144,147,12,160,162,165,141,171,184,205,192,193,195,278,201,203,9,208,218,220,221,228,229,241,247,249,269,253,254,272,256,307,258,260,21,266,251,277,280,283,115,285,286,296,291,293,298,301,305,306,310,313,317],consruct:268,lex:[306,68,173,17],return_depth:319,precheck:119,great:37,survei:[42,261,160,7,80,307,88],flip_automorph:287,rdf:141,honkala:266,reduced_subalgebra:193,set_approximate_ord:289,lusztig1985:142,check_standard:[262,286],sgp:[247,88],"_inner_shap":180,pf3:[128,2,225],michiel:[260,272],weaktableaux_factorized_permut:180,sgn:75,sga:61,latex_scalar_mult:141,powerseriesr:306,sgg:61,to_labelling_dyck_word_pair:128,zip:[304,57,144,80,163],commun:[5,207,42,33],dominant_maximal_weight:101,doubl:[281,286,42,56,308,160,182,140,184,82,220,11,218,109,50,142],low_bd:173,multitableaux:301,doubt:195,nonincreasingli:283,phi_fg:141,cliqu:146,south_label:52,commut:[],monthli:307,abstract_word:[312,192,231,42],n_mu:306,compositiontableauxbacktrack:166,verschiebung:[258,249,140,14,68,260],dws2:256,affinefromclassicalandpromot:265,elt_class:221,maxsplit:150,cumbersom:[253,283,140,276],coskun:52,thin:[12,171,319],claesson:256,scatter:5,matrix_centralizer_cardin:222,process:[195,108,307,163,7,286,184,311,122,147,125,262,319,90],positive_roots_by_height:143,raisebox:321,finitewordpath_triangle_grid_iter_with_cach:311,high:[5,130,222],exterior_squar:228,procesi:228,bene:277,delai:[5,311,40,42],srr:311,palei:81,intelligenc:42,tableau:[76,162,7,165,166,168,10,281,286,112,272,256,180,264,21,106,42,117,122,296,290,293,262,20,301,211,212,287,58,61,310,231,224,306,153],abbabaabababa:[150,42],partitionalgebraelement_bk:169,mypermut:20,sym_perm:0,return_words_deriv:42,block01:184,propagatingid:186,bourgogn:178,relabel_oper:288,singular:[253,5,104,168,65,243],reshetkihin:106,make_dlxwrapp:183,xc3:302,semisimpl:[228,293,306,6,241,222,295],notebook:[319,217,184],dominated_partit:306,rigged_configuration_el:[220,76],assert_:142,weylgroup_gen:205,alloc:[62,253,168],palindromic_closur:42,essenti:[253,303,211,276,218,82,184,127,68,269,291],issn:0,stein:[171,43,209,56],element:[],issu:[259,286,268,212,256,78,187,261,7,80,92,167,106,298,163,285,303],block_differ:184,allow:[],sfa_gener:283,a000275:47,plactic:[21,42],classs:144,schnyder:163,lusztig_involut:[281,220,55,106],highest_weight_vector:[254,76,264,21,221,203,11,127,296],subsets_hereditari:37,unorderedtuples_sk:31,move:[37,281,286,112,272,42,307,164,7,119,184,310,198,147,163,128,69,52,269],uncount:59,perfect:[],gdd_4_2:278,krttorcbiject:292,chosen:[253,319,88,280,217,180,287,70,307,186,184,142,311,30,122,221,317,190,35,68,296],gr1989:305,jackqp:309,llmmsz13:306,infrastructur:[13,163],contretableaux_n:212,therefor:[6,241,184,260,269,281,296,143,259,48,26,101,30,190,276,42,253,283,203,291,243,211,301,306,322,140,313,147,290,153],to_area_sequ:[128,256],scalar_qt:[92,283,68],elementary_cryst:[254,94],python:[293,165,20,244,171,150,253,286,22,24,184,183,231,190,42,283,115,201,163,262,305,306,59,140,311,63,147],overal:[291,218],federico:130,billiard:256,sidon_sets_rec:206,testal:201,basis_kei:[297,141],anyth:[37,321,286,256,312,306,184,311,257,101,293,69,173,154],k_interior:306,truth:163,heteromec:56,infinity_cryst:296,subset:[],societi:[285,203,65,43],weyl:[],bump:[228,296,285,58,7,218,241,205,199],duplicate_transition_add_input:184,set_object_enumer:[111,74],guillaum:253,thirteen:253,group_el:205,bmfpr:164,meth:[185,249,167,89,280],variabl:[],three_n_minus_eight:129,overridden:[277,84,143,184,30,291],contigu:[122,7,286],element_wrapp:[265,308,112,11,191,132],weight_transduc:184,s_a:[295,184],tamarilattic:[164,189,163],s_c:184,s_b:184,s_d:184,lattic:[],s_k:[19,169],finitelatticeposet_with_categori:[29,163],matric:[],semidirect:[277,241],maavl:117,tt1bi:30,symmetricfunctionalgebra_multipl:[49,116,260,258,249],weightedintegervectors_nweight_with_categori:114,templ:229,coproduit:272,shortest:[155,42,143,33,217,180,11,206,319,269],noneg:112,row_sum:[58,315],transposit:[286,75,257,180,287,99,7,61,288,317,184,293,306],could:[160,165,321,20,84,13,173,253,286,272,256,143,148,48,184,30,186,269,190,35,276,277,285,81,301,137,306,140,218,147,222],multichoic:96,put:[253,195,296,178,56,143,306,285,180,68,154],david:[212,137,81,61,108,163,272,171,88,130,43],associahedra_with_categori:24,length:[155,5,6,7,11,14,22,148,24,26,31,34,35,40,42,143,49,262,52,57,59,60,61,62,141,63,68,225,74,78,82,90,281,93,282,98,99,15,106,108,117,119,122,163,128,130,137,140,257,144,147,151,154,12,271,164,168,171,180,184,185,231,190,205,192,201,203,206,209,211,287,217,220,222,224,228,229,241,242,244,150,260,269,253,112,272,256,307,258,249,198,21,276,277,280,115,285,286,36,293,172,296,301,304,33,306,308,310,311,312,313,317],enforc:[184,163],outsid:[276,286,268,143,99,48,68,306],create_set_partition_funct:169,scriptstyl:184,petersengraph:[37,137],"_s_to_self":283,morrison06:222,yinf:108,symmetric_squar:228,"4be":80,hadamard_matrix_paleyii:81,fair:0,aorder:[289,78],to_affine_weyl_left:241,state_hook:184,to_poset:[30,198,285],system:[],to_noncrossing_permut:256,suffixtri:[90,42],zero_el:289,aabaab:[311,42],descent_set:[20,166],termin:[228,262,231,296],zelevinski:[83,254,143,23,24,309,92,283,35,319],triangle_grid:311,integerlistslex:[12,158,253,22,306,171,130,269],variable_class_it:319,iwahori:[228,186,142,61,241],demazure_oper:142,aocp4:306,havel:62,schuetzenberger_involut:[47,7,42],"ma\u00eetris":42,a005843:56,permtut:272,gridopt:311,test_bst_of_sc:285,counter:[253,35,319,184],carlitz:[286,68,179],viewer:[40,52],clearli:[5,253,68,222],liner:192,kr_type_d_tri1:106,serrano:[272,140,212],symmetricgroupalgebra:[214,141,121,61,140],umbral:[306,154],atin:0,adjunct:[140,280,272],transitivegroup:317,discret:[64,47,268,256,42,78,143,267,307,7,80,61,311,144,300,163,132,43],"_shape":180,garvan:306,order_polytop:163,to_cycl:[286,0],tamvaki:52,six_vertex_model:223,diagonal_reading_word:128,ls12:296,comparison:[261,23,99,184,142,306,141,290,218,176,50,68,69,87,189],segment:[93,296,40,256,7,286,11],prepon:184,to_triangulation_as_graph:256,stronger:251,tex_from_arrai:321,face:[],acbab:5,bibtex:0,univari:[83,196,289,77,4,43,283,163,309,61,92,143,186,298,253,66,316,171,68,115,71],recoil:286,a000272:56,url_fil:81,fact:[228,268,160,6,7,168,218,260,173,253,286,296,272,256,21,143,259,184,185,30,186,269,190,111,155,276,42,283,285,243,298,301,306,140,61,142,312,141,65,147,68,225],stoyanovskii:7,frobenius_coordin:306,dbe:184,abelian_vector:42,krtableauxbn:281,naf_27:184,rough:[291,163],simple_roots_tild:143,trivial:[228,75,160,82,167,141,247,89,173,43,281,307,143,99,144,184,266,269,277,284,253,200,285,122,317,291,295,56,61,198,313,222],a005117:56,implicit_suffix_tre:42,brouwer80:[195,268],bump_multipli:7,should:[4,6,7,11,13,14,265,143,24,30,32,35,40,42,49,262,52,56,61,92,231,68,268,76,80,81,82,83,84,62,286,289,0,101,108,113,114,163,132,137,140,142,144,147,155,243,164,165,141,169,171,180,48,184,185,186,188,205,195,317,321,191,206,207,12,211,287,217,218,228,229,236,241,214,247,249,269,253,272,256,307,258,259,264,21,275,276,277,280,283,285,303,290,291,293,295,298,301,304,306,322,309,310,311,313,314],unrank_from_list:303,mrnumber:0,tape:184,cores_length_with_categori:[180,306],simple_root:[228,76,155,234,235,236,237,238,239,240,82,167,13,89,296,143,259,205,276,277,6,119,291,243,295,302,218,142],plot_parse_opt:[143,276],meant:[113,256,82,84,207,34],a000043:56,a000040:56,a000041:56,abbb:[312,42],abba:[150,312,231,60,42],a000045:[253,56],familiar:283,abbabab:42,petr:144,autom:253,piecewis:[143,306,11],is_chain_of_poset:163,is_column_strict:[306,7,301],bhnr04:[42,307],debruijn_sequ:33,stuff:130,s4_8:137,asso:24,mrclass:0,fulltensorproductofcryst:21,rise_composit:256,frame:[311,276,40],loth02:[7,307],weyl_stabil:143,temporarili:[171,184],binary_unshuffle_sum:61,co10:[306,68],to_permut:[229,178,212,256,308,122,224,205,301],t2p5:[19,169],youngrepresentation_seminorm:75,crochemor:42,brlek89:307,classcial:106,quickest:[68,211],word_out:[190,184],heuberg:[190,184],conjugacy_classes_repres:[286,61],clusterse:[],bt5:253,hl_creation_oper:[83,298,68],reiner97:143,compare_color:184,stochast:286,ett:61,wordpaths_hexagonal_grid:311,etc:[],tla:254,characteristic_speci:72,vasserot:293,littelmann:[],caylei:[288,276,307,0,205],a004526:56,"_to_integer_iter":312,boyer:42,factor_occurrences_iter:312,malcolm:195,truncatedstaircas:212,classicali:310,latex_peak:256,laurentpolynomial_mpair:142,check_bitrade_gener:0,cst_to_tran:180,torsion:[68,260],to_factorized_permutation_tableau:180,cells_map:0,azaaazaazaazaaazaaza:42,trajectori:[311,42],immedi:[253,22,306,7,184,143,144,108],permutation_cython:257,folding_orbit:70,longest_common_subsequence_problem:42,words2:307,"_test_pickl":[13,304,269],psi:[272,10,140,201],exchangeable_part:[319,217],togeth:[253,20,276,22,306,7,217,101,180,143,122,106,146,218,108,310,172,88,52,90],hc3x:4,packing_in_a_hypergraph:137,spain:283,"_garnir_cel":[306,293],a_real:[272,77,305,115,140,27,201,283,241],from_reduced_word:[277,112,143,287,286,82,313,225,241],wabc:5,cvl:88,inner_corn:211,down_list:[92,306,68,7,293],end_column:168,is_complet:[0,285,52,184,256],dm_57_8_1:268,heckealgebrasymmetricgroup_gener:61,pentagonposet:[29,304,189,163],"_initial_st":12,auxilliari:257,"0123456789abcd":80,realfield:311,min_sum:[22,306,269],"__reduce__":183,site:108,archiv:[276,187],proding:184,incom:[200,90,42],latticeposet:[29,163,212,28],mutat:[],"35b":80,kra2001:256,weingarten_matrix:308,matthew:0,top_garnir_tableau:[306,293],tableau_tupl:301,phi:[5,6,82,141,11,281,254,143,26,101,21,106,218,108,191,275,42,283,201,265,203,9,50,296,132,56,140,61,142,220,221,290],ball:[149,256],expans:[12,77,78,162,7,165,27,14,249,253,178,272,307,258,260,4,184,190,280,201,163,49,297,298,319,56,306,322,140,101,147,68],upon:[276,286,272,310,70,48,140,240,241,266,201,222,190,171,20,306,269],ram1997:61,phd:[185,144,225],phy:[160,5,4,310,207,68],gale_ryser_theorem:130,eulerian:[286,272,179,140,171,68],mosaic:52,finitewordpath_3d_str:311,off:[75,160,2,184,185,218,149,211,291],similairti:222,semimodular_lattic:29,colour:42,setpartitionssk_k:169,latexexpr:[312,184],energy_funct:[21,11],command:[228,272,160,283,253,165,184,205,171],dm_28_6_1:268,depict:[306,93,211,52],subgroup:[313,228,301,0,160,137,306,293,241,143,317,222,247,205,295,130,43],less:[155,229,77,160,5,7,241,168,218,169,251,253,286,19,282,256,307,98,99,186,205,42,283,285,287,122,163,206,128,301,304,57,306,61,312,220,65,222,68],from_row_and_column_length:211,permutation_speci:246,bdvo12:[306,68],compositiontableau:[140,166],stirling1:171,stirling2:171,accepting_wher:184,paul:[5,253,262,286,306],prepend:[84,272],web:144,crystal_of_letters_type_b_el:290,is_reduc:291,emptysetspeci:[161,72,149,253],totallyorderedfiniteset_with_categori:176,regularoctopus:78,first_return_decomposit:256,t_schur_powsym_symmetrica:174,spechtrepresent:75,globalopt:[286,211,76,256,180,117,7,264,310,185,21,122,291,293,224,306,269,301],webpag:81,piec:[276,40,56,5,206,52],five:[253,268],as_tupl:286,"0110077v1":306,height:[276,181,7,82,296,255,256,30,143,103,104,105,106,109,113,85,42,197,163,207,241,132,212,306,310,311,180,224],recurs:[],recurr:[],desc:305,fundamentalgroupofextendedaffineweylgroup:313,"__reversed__":271,finite_set_map_ci:285,aitken:122,priez:[148,256],south_west:52,quantuminosolv:40,jacobi_trudi:[306,211],setpartitionxk:169,poor:150,npoint:[253,47],new_stat:184,techreport:42,thiem:115,thiel:88,permutations_set:286,partitionalgebraelement_prk:169,to_sr:218,flush:[253,36,285,58,7,184],guarante:[298,141,40,5,283,243,7,184,84,168,291,163,127,285,269],markov_chain_transition_matrix:198,transport:[72,91,246,284,318,159,149,107,273,71],to_symmetric_group_algebra_on_basi:305,summat:[253,141],gessel_reutenau:68,kr2:[153,310],avoid:[185,286,33,256,253,259,7,220,184,142,18,257,122,269,163,171,69,285,189],kr1:[153,310],multi_polynomial_libsingular:314,ababbabaaba:150,summand:[305,306,141,201],finitewordpath_square_grid_it:311,mnemon:241,maximal_elements_combinatori:225,imaginari:[143,253,101],"_structur":149,clarendon:[92,83,309,283],genericbacktrack:[12,286,158,256,166,147,127],doublylinkedlist:154,dissert:207,preferenti:56,compose_back:22,stage:125,to_translation_left:241,list_rec:117,brouwer_separable_design:[195,268,251],minimalsmoothprefix:307,gutenberg:56,krt:[281,55,255,113,197,181,220,103,104,105,85,10,292,109,153],print_tupl:241,cadenc:42,a2xa1:160,singletonspeci:[72,253,196,161,66,149,71],a2xa3:295,a2xa2:160,krc:[281,220,106],mr1890195:310,standardpermutations_avoiding_21:286,homogeneous_degre:201,jezek:304,polcoeff:47,apply_permutation_to_posit:42,return_word:[184,42],otago:305,hwy:108,lift_on_basi:228,rectifi:122,pitfal:48,finitely_gener:205,mere:[258,7,311,122,90,269],merg:[253,307,5,59,184,11,176,243],markov_chain_digraph:198,lowermost:[22,7],permutation_poset:286,beta3:0,parethes:16,bilinearli:[143,201],overflowerror:253,"function":[],wilson_construct:[144,251],letter2:59,letter1:59,string_paramet:296,summand_project:141,l_check:218,prime_power_mod:247,decomp:286,count:[],a005408:56,baptist:[148,256],smooth:[205,42,307],sum_of_fatter_composit:201,modular_lattic:29,bbba:307,bu87:43,otherwis:[5,6,7,11,13,14,43,22,27,29,30,35,176,42,46,70,65,68,69,75,77,81,90,281,286,289,99,18,108,271,122,163,128,130,131,132,137,140,142,143,198,155,125,166,167,169,171,179,180,184,186,190,195,201,207,297,212,217,228,241,248,249,251,253,272,256,307,258,260,266,275,276,277,283,115,285,288,290,291,293,172,298,301,304,306,311,312,314,319],problem:[],max_linear_extens:185,canadadian:129,"int":[253,276,115,0,56,306,271,286,184,21,183,63,146,307,298,163,244,303],inv:[247,12,42],with_basi:201,novemb:[285,146,80,272],corner_sum_matrix:212,cherednik:[228,142,218,82],inf:[289,22,306,115,229,254,147,130,269],general_linear:[313,241],k_tableau:180,nonetheless:253,stream_class:182,lookup:[23,303,231,147,280],rigged_configuration_elt:292,varieti:[4,306,61,106,205,262,52],kazhdanlusztigpolynomi:[199,121],randomposet:189,behold:276,list_clone_demo:[87,229],weak_l:99,q_analogu:[172,43,46],repeat:[229,160,7,84,171,88,286,178,307,184,18,108,192,114,199,288,122,56,137,57,74,140,142,147,151],neighbor_edg:40,recur_gen2b:56,from_permutation_group_el:286,q_2:218,q_1:218,a001969:56,lauda:293,"_homogeneous_basi":298,vein:84,matrix:[],ghost:260,morvan:29,"2489v2":162,cyclotomi:247,finiteposet_with_categori:163,rule:[],ruld:311,lift:[228,77,160,290,82,253,265,272,180,259,186,106,193,42,283,115,203,209,298,140,218,310,220,317,68],caveat:[276,211,143,6,61,205,295,269],propagating_numb:[186,169],"_test_el":13,finitewordpath_all_str:311,number_of_sali:286,ignore_bipartite_belt:319,symmeter:185,divers:128,fortiori:253,rotate_cw:212,sum_of_monomi:[141,228,283,68,142],num_point:137,"_current_list":269,rauzy_fractal_plot:5,stub:[285,30,48,95],mols_12_5:268,"const":182,weightspac:[277,143,259,6,141,243],"29e":80,testpar:21,abaababaabaababaababaabaababaabaababaaba:[5,47,307],longtest:209,exp_dual_lattic:241,spec:[283,269],wreath:[301,293],rel:[286,229,42,56,22,307,61,241,29,198,300,11,163,247,171,111,189],ugli:[257,68,276],some_weight:142,ptc:222,hakimi:62,h_grassmannian_piec:52,dyckwords_al:256,internal_product:[283,68,140,201],replace_symbol:256,add_transitions_from_funct:184,f_polynomi:[319,163],up_root:207,recursivelyenumeratedset_forest:147,conjugate_by_permut:308,math:[228,33,262,77,160,5,162,6,7,165,241,83,11,12,129,88,260,16,207,93,254,280,179,307,143,4,26,101,130,185,21,106,188,218,108,308,205,301,300,277,195,42,319,283,199,115,285,286,46,51,296,272,291,163,127,128,82,209,52,189,132,298,258,211,256,305,58,78,309,61,142,92,180,221,65,310,222,293,68,306,153,225],morphism_matrix:205,cmu:283,s_n:56,cmp:[141,290],hora:81,cjm:[88,129],speci:[],orthogonal_arrai:[195,268,261,57,144,251,17],consequ:[253,195,229,180,48,293,7,140,61,163,247,319,260,43],tamari_lequ:[285,256],list_definition_proc:125,chen:[68,272,42,43],restrictedpartitions_nsk:306,disjoint_mate_dlxcpp_rows_and_map:0,testerman:160,contemp:[68,106,221,272],biject:[],t_action_on_basi:61,hopf_algebras_with_basi:141,swap_increas:42,topolog:[304,42],told:147,somos_:47,mieczyslaw:195,to_dual_translation_left:241,test_phi:140,elementary_abelian_2group:0,swiercz:88,left_cc:171,affineniltemperleyliebtypea:121,dot_product:295,vogt:65,groupalgebra:61,studi:[185,254,42,253,5,283,58,164,140,27,165,18,312,203,163,310,68],bmp07:307,glu:52,brenti:[287,199],adiqu:307,to_cor:[287,306],w_n:140,process_lett:90,finitewordpath_2d_callable_with_cach:311,normalize_coeffici:309,is_order_id:163,linearli:[84,297,140,115,243],demazure_lusztig_operator_on_classical_on_basi:142,mathe2:68,to_cod:22,visscher:306,total:[230,78,6,7,90,253,296,272,256,22,99,48,144,30,108,35,195,42,117,66,285,163,189,132,304,33,306,308,217,143,198,222,293,319],highli:[253,133],plot:[],relabel_edg:288,is_column_strict_with_weight:180,coinv:12,greedi:[319,0],tsetlin:[],missing_block:144,"_to_cycle_set":286,"sch\u00fctzenberg":[198,163],to_permutation_str:205,accept_input:184,is_bipartit:[319,217],schuetzenberg:[286,7,42],bruhat_pred_iter:286,dual_nod:313,tklam1996:225,springer:[272,42,261,304,283,199,287,291,163],word:[],weyl_act:[143,218],restor:[140,184],coerce_to_e7:295,coerce_to_e6:295,work:[],base_set_cardin:229,remove_epsilon_transit:184,pierr:212,divided_differ:314,quiver:[],occurrences_of:93,repos:42,aaaa:47,aaab:184,to_nam:80,fundamental_group:[313,241],plist:306,on_basi:[142,82],jiacun:184,macyz:92,cartantyp:[155,73,232,160,45,235,236,6,238,239,240,241,167,11,207,13,170,250,227,89,252,281,254,181,143,259,233,44,234,106,32,310,205,275,276,277,237,194,119,204,243,127,295,82,302,287,70,218,142,220,319,69,291],remove_horizontal_border_strip:306,ktab:61,ordinari:[306,293,301,78],song:56,iter_of_el:141,ababba:90,groupsemidirectproductel:241,vialard:311,sever:[160,5,165,84,218,171,16,251,43,307,22,78,184,185,21,269,108,190,35,277,276,195,122,290,295,52,298,301,306,61,142,62,143,144,65,68],verifi:[253,286,75,56,22,306,285,61,180,185,137,317,159,40,171,88,132],coxeter3:[170,199],lam:[298,88,211,272,77,180,260,306,140,61,92,258,101,293,268,14,68,249,225],recogn:[],drake:[286,306,256],tensorproductofkirillovreshetikhintableaux:[281,55,255,113,197,181,310,103,104,105,85,10,292,109,9,153],cherednik1995:142,after:[228,162,7,241,141,150,253,286,20,272,256,180,184,30,183,190,111,276,277,42,285,122,291,163,128,82,311,304,70,59,140,218,62,312,144,65,222,319,306,154],lab:42,adic:[296,307,241],is_incomparable_chain_fre:163,l_start:0,word_class:[312,192,150,231,42],abstractsinglecrystalel:254,law:[185,286,74,151],arch:185,laq:191,demonstr:[253,287,272,283,74,165,184,241,163,190,132],domin:[228,5,6,7,82,244,11,310,254,282,143,101,108,275,46,293,207,130,132,301,287,306,218,142,243],interpol:[218,142],green:[276,93,40,143,306,163,7,184,185,198,291,222,223,127,262,52],seok:[203,56],gs93:61,order:[],height_of_ribbon:180,kostka:[],zee:[298,280,258,83,188,14,68],shifted_concaten:286,finitewordpath_hexagonal_grid:311,finitewordpath_square_grid_str:311,cospin:[283,117,68,4],pascal:[253,56],pge:286,demarc:306,lex_cmp:87,incid:[],japan:58,flexibl:[253,269,276],finitewordpath_north_east_tupl:311,juci:61,symxt:4,inadvert:[304,167,89],integerlistsnn:269,djp01:[42,307],deformed_coarse_powersum:115,pjm:262,them:[228,229,268,78,243,7,241,242,168,218,0,88,90,253,286,150,272,256,307,22,148,48,184,52,186,176,111,276,195,42,115,285,163,128,129,130,208,57,306,140,61,62,143,141,147,66,68,154],thei:[12,229,160,6,7,321,141,253,218,13,14,248,260,16,90,33,281,93,150,171,256,21,22,78,48,184,130,185,30,266,188,310,190,205,301,276,195,40,42,261,283,222,285,286,288,122,291,163,128,52,131,132,299,211,212,56,137,0,58,74,140,61,142,92,144,231,147,66,293,68,306,225],safe:295,fermon:310,"6184v1":7,random_subposet:163,"break":[133,42,137,33,6,286,218,143,141],reducedincidencealgebra:193,brouwer:[144,268,195,251],speciesstructur:149,in_bounding_box:276,s42:172,is_affine_grassmannian:241,tensor_product_kr_tableaux:153,kmoy07:106,lacim2010:42,inexist:266,pbd_4_5_8_9_12:266,classical_decomposit:[281,106],a185357:253,basesofqsymorncsf:201,tinv2:218,open_extrep_url:125,tinv0:218,ommit:137,leqm:163,network:[130,163],arithmeticerror:171,symmetricgroup:[286,75,283,306,61,82,288,317,121,247,158,87,47,171],dual_k_schur:[283,77],cddc:307,as_partition_dictionari:222,daniel:[199,184,241,190,205,88,173],asympot:184,forth:[305,306,283],p312:286,preceed:184,gromov:[112,52],eilenberg:148,commutativeadditivesemigroup:141,depth_first_it:207,standard:[155,229,78,162,236,6,7,165,166,83,184,14,88,171,173,253,286,178,42,256,217,180,98,160,27,18,176,190,35,301,243,280,283,115,285,120,122,291,163,262,52,272,298,319,211,212,56,305,58,307,140,61,258,231,314,287,223,224,293,68,69,306,309],nth:[312,66],"__setitem__":[12,171],macneil:163,node0:66,node3:66,is_fsmstat:184,angl:[276,184],codimens:[24,295],incidence_matrix:[5,137,88],traceback:[5,6,7,11,16,43,22,24,29,30,40,42,262,56,57,59,61,92,231,65,66,63,68,74,77,78,80,84,88,90,286,289,98,99,102,106,176,114,119,122,163,128,130,189,137,140,142,143,144,147,154,155,125,164,165,141,170,171,178,179,180,48,2,184,185,186,131,190,205,261,278,201,317,206,211,212,287,217,218,228,322,237,208,247,150,269,253,112,272,256,257,198,21,266,277,200,280,283,285,303,291,293,295,298,299,301,304,305,306,307,308,311,312,319,243],dendriform_leq:272,regress:280,dual_lattic:241,vandermondemat:171,tdomin:142,krttorcbijectiontypea2odd:85,render:163,qdm_19_6_1_1_1:268,independ:[37,276,286,111,40,280,42,180,163,140,61,319,296,184,222,68,243,251],a_long_simple_root:143,integercomposit:[189,163],finitewordpath_hexagonal_grid_list:311,thick:[276,93,40,42,143,311,108],unnorm:61,dm_52_6_1:268,ratel:164,original_print_opt:141,john:[276,88,272,46,83,144,68],ground_field:319,leeliz:319,pretty_print:[128,285,256],branch_weyl_charact:[228,160],nonmaxim:228,fromrcisomorph:10,rc_element:[113,85,255,181,197,103,104,105,10,109],target:[298,200,26,280,160],sagebook:253,provid:[12,160,236,6,164,163,241,84,21,218,247,171,88,269,253,254,20,272,256,257,22,48,184,30,186,106,296,176,310,205,41,280,261,117,285,288,122,289,317,125,295,129,52,208,56,137,306,74,61,248,143,307,147,0,316,319,154],ktw:52,upcom:276,a2xc2:302,iron:285,"5mm":93,minut:[62,205],uint64_t:146,is_extend:[259,277,243,142],kuperberg:212,standard_factor:[42,307],kr_type_dn_twisted_with_categori:106,monotonetriangl:212,pointsiz:311,manner:[306,0,42],"__main__":[285,201,147],ababaaba:42,ababaabb:311,to_exp:[306,293,322,222],strength:[253,144],recreat:276,unhash:184,latter:[286,312,272,30,305,306,48,140,61,84,313,184,163,68,251],saunder:148,fname:125,aaba:42,block_design:[137,88,125],maximal_antichain:163,aabb:42,final_word_out:[190,184],bruck:88,bruce:7,legibl:253,gelfand_tsetlin_pattern:[58,212],int_copr_of_e_in_m:272,is_tang:[311,42],has_suffix:[150,90,42],setup_latex_preambl:184,erikson:287,number_of_connected_compon:180,abbaabbaababbaabbaabbaababbaabbaab:312,ordinal_sum:163,max_part:[253,298,22,306,180,317,87,47,130,269,154],bracket:[253,112,98,185,30,141,207,68],radford:272,weaktableau:180,unchang:[286,254,22,283,306,184,20,106,101,293],latin_squar:[268,261],notion:[253,286,319,41,180,162,99,163,285,222,68,151,212],affinizationof:[9,263],silberstein:286,"0x7f26efbc0d70":252,opposit:[254,143,259,119,61,140,311,21,283,291,163],shard_poset:300,"_alphabet":176,noninteg:258,krob:[162,68,165,272],tensor_product_kr_tableaux_el:55,vals_in_col:0,"500000cm":93,involv:[228,185,256,160,137,253,285,266,218,241,62,30,144,141,146,225,188],special_nod:[241,167,313,291,32,13,89],facecolor:93,gelfandtsetlinpatternstoprow:[58,212],deepest:285,robinson_schenst:[286,47,42],words_to_check:68,predecessor:[143,127,285,184],print_til:247,regoctspeciesseq:78,cha2005:256,to_arrai:281,a001909:56,cryptographi:195,prandom:307,recalcul:253,a001906:56,b46d:286,emb:[143,281,277,296,160],shuffleproduct_shift:34,emi:128,setpartitions_set:[229,169],dlxcpp_has_unique_complet:0,septemb:[283,128,272,42],fomin:[143,283,24,225,163,35],plot_hedron:143,pyramid_weight:256,is_proper_prefix:42,ordinal_product:163,is_cor:306,cyclespeciesstructur:159,is_cov:173,christian:[319,279,256,217,24,119,120,2,172,35,68,69],quantum_root:155,tupleofwords_to_wordoftupl:184,subgraph_search_iter:163,awar:[228,6,184,163],co2:22,symmetriz:[217,264,291,35,319,69],"_multiply_basi":[214,298],mastnak:229,"_meet_matrix":304,libgap:[205,171],diagram_str:[306,211,293],print_tikz_env:93,propp:[212,163],lambda_of_monomi:272,standardtableautuples_s:301,drawn:[253,211,256,276,143,306,285,321,186,184],awai:70,ignore_coeffici:[319,217],emptyspeci:1,accord:[12,235,6,7,241,87,171,269,43,253,93,22,48,184,30,276,195,0,285,286,163,189,311,287,62,198,68],dualimmacul:[272,140,201,165],xrang:[185,299,42,253,235,236,74,266,102,18,306,144,65,222,247,129,151,303],hcospin:[283,68,4],unfold:[35,132],reset_clust:319,south_east:52,unordered_tupl:171,e1star:[5,93],cor:122,willis10:7,howev:[228,268,160,243,7,165,321,84,141,260,253,286,296,272,256,22,259,48,184,30,190,37,276,277,261,283,115,285,119,80,291,163,189,132,298,302,242,305,58,310,143,220,68,69,306],a1xb1:160,configuraiton:275,a1xb2:302,pi_ik:61,ribbonshapedtableau:[224,122],jameskerb:[306,61],longest_increasing_subsequ:286,resolvable_bibd:80,setpartit:[253,229,163,27,186,169,297,115],com:[195,268,212,42,162,306,7,286,81,185,144,317,184,163,171,285,262],col:[144,6,306,293],crystallograph:[155,302,143,259,6,119,142,291,287,13,295,69,243],widen:205,frank_network:163,is_modular:[29,189],permut:[],from_corner_sum:212,wider:253,guid:276,thierri:[311,253,42],speak:[253,114,302,0,186,291,222,269],degener:[276,301,259,291,293,65],subdesign:[195,268],convolut:193,inside_corners_residu:306,delta_deriv:42,"6de":80,to_word:[117,7,122,42,301],stinson:[266,80,173,261],face_contour:93,standardpermutations_avoiding_132:286,epsilon0:[265,106],unrank:[253,286,303,143,74,299,15,171,47],cmunu1:92,"__3__":285,unproven:272,johansson:[53,171],rev_lex_less:42,properti:[],increasing_tre:286,aim:184,pairwis:[],asm_compatible_smal:212,to_symmetric_funct:[297,165,272,115,201,27,140,128,68],num_block:137,antikashiwara:21,homset:140,succes:307,printabl:176,desarguesian_plan:88,cone:[155,300,276,243,52,189],s4_14:137,subdiagram:[106,69],interval_poset:[185,285],find_cartan_type_from_matrix:69,symmetricgrouprepresentation_generic_class:75,"fran\u00e7oi":253,descent:[],incorrectli:56,perform:[],to_subset:22,lucky_car:128,a000085:56,descend:[300,212,256,285,84,222,42,189],a000081:48,root_poset:[143,6,163],a000088:230,dict_it:248,hank:171,check_el:48,fragil:20,partitionalgebra_prk:169,quentin:88,hang:269,lyndon:[],hand:[],coskunvakil06:52,rais:[163,165,208,27,247,171,88,173,29,286,289,272,256,307,180,259,24,266,184,185,30,186,269,108,42,253,283,303,317,143,132,298,319,211,212,304,306,142,22,144,65,68,150,11],bilen:286,to_perm:256,n26:[190,184],a015551:56,kept:[13,286,150,184],oa_25_1262:268,partition_speci:318,macaulay2:163,kyle:300,thi:[],lothar:[185,283,286,212],finitecombinatorialclass:145,sloane_funct:56,isotype_generating_seri:[72,253,230,78,161,1,246,66,294,107,273,318],halllittlewood_gener:83,bounding_box:[143,276,40],farther:[128,306],foata_biject:[286,42],denton:287,builtin:150,oa_15_224:[144,268],board:108,build_alphabet:[136,59,176],finitewordpath_north_east_cal:311,hkp2015:[190,184],dot2tex:[127,198,306,207,163],maya:306,setpartitionstk:[19,169],underpath:[128,256],mayb:[286,111,140,272],lcm:56,add_entri:[7,301],extendedaffineweylgroup_class_with_categori:241,deprec:[],dynkindiagram_class:119,reset_nam:56,night:184,qxy:253,seminormal_test:61,scarabotti:286,xxxyxzzx:231,negat:[143,68,140,201],cells_head_dictionari:180,dyckpath:311,number_of_class:222,flatten:[48,286,141,7],bori:132,relabel_vertic:288,bore:[143,276,142],integermatric:[262,315],weylgroupel:205,to_transposition_sequ:180,n_ge:119,stembridg:[276,46,83,291,127,132],callablefromlistofword:42,category_object:101,ordinarygeneratingseri:78,plu:[195,289,268,256,22,48,306,7,286,184,180,185,143,106,290,108,50,68,285],pose:[190,253],confer:[304,42,142],orellana:[306,68],rhombu:52,color_by_label:[127,276,205],rhombi:52,repositori:[266,173,17],partitions_all_bound:306,post:[185,84,147,276],obj:[171,256],"_____":[128,256],finiteposet:[29,198,189,163],literatur:[253,286,142,301,42,160,305,306,293,7,26,61,140,203,259,68,130,243],nrunorderedtupl:171,unnecessari:[253,283],morse11:298,i_m2:[133,216],i_m1:[133,216],bij_abstract_class:[113,105,10],octopus:78,from_partit:99,are_mutually_orthogonal_latin_squar:[268,261],nijenhui:[306,7],schenst:[],xyz:[5,59,16,184,307],"float":[5,93],bound:[77,5,241,171,173,17,29,112,272,180,99,101,185,269,276,195,261,283,115,201,143,122,163,298,287,306,253,22,144,65],dendriform_less:272,vling:0,tiankai:61,"_normalize_coeffici":309,accordingli:[195,272,5,109,277,163,224,130],variable_class:319,wai:[229,268,160,5,322,6,7,165,84,167,184,13,171,89,269,281,286,272,256,260,22,148,24,101,102,185,30,311,218,176,276,195,42,253,283,117,285,21,122,300,293,127,128,52,189,298,55,211,301,56,305,70,307,308,140,61,62,180,144,146,147,0,224,68,306,153],cdbe:184,doubling_map:109,generate_signatur:108,maximal_chain_dyck_word:185,lowest:[311,256,306,7,101,185,257,293],nb_leaf:285,test_uni_meet:[286,285],bawo2012:184,kfpoli:46,kroneck:[272,283,306,140,61,68,193],maxim:[228,160,5,7,225,87,29,286,265,256,101,185,30,111,42,253,285,296,317,163,130,189,56,137,287,61,142,304,144,146,147,319],"true":[1,4,5,92,6,7,10,11,12,13,14,227,16,43,297,20,22,23,26,27,29,30,31,32,33,34,35,36,37,39,40,176,42,45,46,50,48,49,107,52,55,56,57,58,59,60,61,62,63,65,66,68,69,322,71,72,73,74,75,76,77,78,80,81,82,83,84,87,88,89,90,91,281,93,289,96,98,99,101,15,44,104,268,106,108,109,111,113,115,271,118,119,120,122,265,159,125,126,127,128,129,130,131,132,137,140,142,143,144,147,148,149,153,154,155,160,161,162,163,164,165,166,167,141,169,170,171,172,173,47,179,180,182,2,184,185,186,187,188,190,191,193,194,195,196,197,199,200,201,203,204,205,206,207,208,209,211,212,214,287,217,218,231,220,221,222,223,225,228,229,230,232,233,234,235,236,237,238,239,241,242,246,247,248,249,243,251,252,253,254,272,256,307,258,259,260,261,262,198,264,21,266,269,273,276,277,278,0,283,284,285,286,288,112,290,291,293,294,295,296,298,299,300,301,302,304,305,306,308,309,310,311,312,313,314,317,318,319,150,321],finitewordpath_square_grid_callable_with_cach:311,reset:[76,7,321,141,184,286,256,180,264,185,21,183,117,122,291,293,211,301,306,310,224,319],coset:[286,241,301,0,308,208,313,247,88],cocharg:[220,7,301,42,310],abbba:311,tp_krtab:220,almost_positive_roots_decomposit:143,a000961:56,maximum:[229,7,166,168,311,286,0,256,101,131,37,42,261,201,122,317,163,262,189,132,56,137,58,62,312,146,65],maximun:166,crystal:[],brubak:[58,218],absenc:253,supercharact:115,emit:276,rencontr:[171,56],milano:42,"abstract":[],israel:272,s_c_1:130,on_fli:303,postscript:276,permutationopt:286,cacao:[90,42],itensor:[283,68,201],compositions_n:[22,126],string_rep:[33,312],refactor:[21,68,218],jona:33,g_c:66,jone:[106,132],test:[],kirillovreshetikhincrystalfromlspath:106,list2func:130,phi_fg_h:141,incidence_structur:[137,144,278,173,17],irmn:92,wordmorph:[93,192,42,307,5,59,311,312,47],other_outcom:104,periodica:184,bernstein_creation_oper:[68,140],omega:[276,277,297,272,280,56,258,283,115,140,218,142,298,49,14,68,249],abscissa:256,interval:185,bernstein_creation_by_def:68,q_int:43,metapost:[23,127],tau_epsilon_operator_on_almost_positive_root:143,roesler:108,right_split:[281,220,55],global:[76,7,165,286,256,180,264,185,21,37,283,117,285,122,291,293,47,211,301,306,60,61,310,62,224,69],datum:[],callable_dict:303,middl:[117,186,256,169],transduc:[],graph:[],to_ncsym_on_basi:140,yve:[283,68,285,4],rightmost:[281,286,21,306,285,311,84,122,108,16],simion:[286,256],vector_partit:282,isinst:[59,302,98,74,308,201,311,21,167,36,163,13,150,89,130],southwest:[211,306,7,52],brown:306,k_atom:306,abcba:90,"3ae":80,bjorner:[287,199],octob:128,fpsac:185,seemingli:[5,143],permutations_iter:171,clst03:258,letsgo:231,bring:277,gui:[195,261,137,278,80,144,163,88,131,266],guo:199,jourdan:163,arkadii:7,is_short_root:143,finitewordpath_2d:311,abbabaabbaababbabaababbaabbabaabbaababba:[5,311,192,36,307],arm_left:12,delete_edg:132,upper:[29,287,211,12,308,306,307,7,122,101,185,92,144,188,184,176,163,35,269],brave:61,slide_multipli:7,htm:137,evenlydistributedsetsbacktrack:208,nflush:253,cost:[37,253,278,244,163,127],only_accessible_compon:184,colormap:[5,93],horadam:81,edge_s:205,appear:[268,162,271,7,166,130,141,11,169,247,171,16,173,92,93,296,280,307,0,309,266,101,15,21,186,311,269,108,272,35,111,276,195,278,42,66,286,122,317,163,52,131,132,211,301,305,58,74,308,140,61,62,312,144,231,57,290,68,151,306,225],to_noncrossing_partit:256,uniform:[160,5,163,7,11,295,253,286,22,30,218,285,303,293,128,137,287,306,74,61,142,151],appeal:220,stefan:[272,163],defici:56,color_decreas:185,is_degener:65,gener:[],coeffici:[72,228,1,230,4,161,182,6,238,165,82,83,141,11,246,294,171,142,243,43,91,253,286,289,178,272,258,259,160,100,27,248,234,106,218,162,35,273,276,184,41,280,196,283,284,285,201,46,222,291,159,163,207,107,47,12,52,115,132,298,319,211,56,58,78,140,61,101,92,66,318,68,306,309,71],ababcaabc:311,satisfi:[],chatel:[185,285],coerce_:[283,260],from_transl:241,t223:30,buch:52,default_format_transition_label:184,plotter:52,oa_10_469:268,lam2006:77,abcaababcabcaabcaababcaababcabcaababcabc:5,latex_color_increas:185,standardbracketedlyndonwords_nk:98,behav:[253,286,301,276,283,140,184,201,84,231,293,171],symmetricaconversiononbasi:283,t23:30,montreal:[5,311,307],motzkin_numb:269,fast_cryst:23,mobiu:[304,163,193,43],extra:[253,93,300,268,78,143,276,306,59,48,140,142,185,30,317,287,313,319,243,173],e1m1:218,cycleindexseri:78,y_p:163,bruhat:[155,286,180,99,7,218,241,11,163,205,225,199,189,132],wordpaths_dyck:311,finitewordpath_square_grid_iter_with_cach:311,lower_monomi:269,aabbabaabaabba:42,subpartit:306,useabl:188,knutsonpurbhoo10:52,prove:[253,268,261,5,283,80,208,185,84,35,88,171,269],face_data:241,aval:212,regev:306,set_weight:180,live:[83,276,281,143,259,277,184,309,92,298,317,218,283,87],suppos:[281,286,112,211,301,56,22,162,70,160,7,61,82,143,113,184,283,171,285,306],kostant:108,permutahedron:288,acbd:[311,42],club:253,finit:[],new_kschur:[283,298],linearorderspecies_class:284,reiho:[281,153,310],logarithm:[],graphic:[207,253,93,40,311,42,276,5,285,6,211,163,62,288,184,143,127,90],has_desc:[143,170,205,241],car:128,prepar:[168,69],generalized_cartan_matrix:35,cat:[62,242,299,178,283],fock:293,cao:90,can:[5,92,6,7,11,14,15,16,17,265,20,22,23,24,26,27,28,29,30,183,33,34,35,37,40,42,46,50,52,55,56,57,58,59,61,62,141,65,66,68,69,70,225,74,75,76,78,80,321,82,83,84,88,90,281,93,289,99,102,268,106,176,43,113,117,119,120,122,125,127,128,129,130,131,132,133,137,140,142,143,144,147,149,151,153,154,12,160,161,48,163,165,168,170,171,173,175,178,179,180,182,2,184,185,186,231,188,189,190,191,195,261,199,278,201,203,205,206,207,208,211,212,215,217,218,220,222,223,224,228,229,262,234,240,241,242,247,150,249,251,253,112,272,256,307,258,259,260,198,264,21,266,269,275,276,277,0,283,115,285,286,287,288,296,290,291,293,295,298,299,300,301,302,304,305,306,308,310,311,312,313,316,319,320,243],tabul:[101,160],cac:90,cab:[5,42],ndigit:253,fulton:[122,228,35,7,119],is_arithmet:65,heart:253,hu57:88,to_i_basi:305,dm_60_6_1:268,saito:35,spi:56,oamainfunct:144,tikzpictur:[93,184,108],simul:[253,0],occur:[228,269,286,112,0,184,266,90,176,190,108,42,66,163,272,58,218,144,222,68,151,306],spg:300,hst2008:82,increasing_cover_rel:185,max_run:301,multipl:[],colevel:259,infinitewords_over_orderedalphabet:59,write:[229,160,165,14,249,90,307,22,260,100,184,185,21,121,190,276,195,285,201,125,127,298,211,305,139,140,258,68],cartantype_finit:[13,167,89,291,302],criterion:62,hhl:12,product:[],chi2:115,sp1:[186,229,169],sp2:[186,229,169],sp3:[186,286,169],sp4:[186,169],relabel_heurist:146,abdc:148,semistandard:[281,296,212,42,180,285,58,7,122,231,287,262,117,189,301],to_dual_type_cospac:143,child_list:285,divid:[229,7,208,247,14,260,173,289,272,256,180,259,309,184,269,42,163,56,249,140,61,142,258,66,68,306],explicit:[253,272,0,137,165,201,311,144,13,260,16,90,132],balancedorderedtre:30,info_proc:125,bmbgl09:307,kurt:272,michel:[68,285,272],beazlei:52,lodron0102066:[286,285],uoregon:[306,7],list_clon:[242,286,229,84,180,48,58,7,198,30,122,317,287,223,220,285,269],length_increas:241,lex_cmp_parti:87,graphviz:[127,198,207,163],dw32:256,"_eval":56,coll:211,run_indic:300,braid:[228,286,75,287,218,142,61],dynam:[64,42,307,267,56,20],coproduct_by_coercion:[68,309],theorem:[268,160,293,7,208,247,88,16,286,254,178,272,24,26,184,21,266,108,195,115,285,163,130,56,305,306,140,61,312,144,68],window:[42,287,6,217,198,163,127,319],crystalofnonsimplylacedrc:264,countabl:[115,165,272],partition_pow:68,non:[],recal:[281,277,301,253,5,115,7,286,142,21,222,13,207,171],halt:[253,320],golomb:206,halv:[220,109],spin_squar:4,decreasing_root:185,flint:[171,306],affine_symmetric_group_simple_act:99,half:[281,40,76,256,160,143,23,306,7,165,264,142,311,21,186,128,310,308,272],a015530:56,a015531:56,nov:285,now:[268,160,293,7,165,82,141,218,247,170,171,262,269,281,286,296,104,143,100,184,30,186,106,190,205,35,276,195,42,253,283,201,21,122,317,291,163,128,20,132,137,306,140,61,142,180,147,222,68,243],hall:[],nor:[185,286,296,211,272,256,143,58,285,184,18,122,295,319],introduct:[],exponentialgeneratingseriesring_class:78,radical_difference_famili:[247,208],organ:[304,253,111,268,147],cycle_str:286,drop:[306,285,42,78],from_inversion_vector:286,tokuyama:58,rsw2011:[286,61],abcdefg:137,ordinarygeneratingseriesring_class:78,januari:218,abstractword:311,ghhggh:307,domain:[228,93,20,231,42,253,5,308,59,7,201,61,82,311,141,218,283,223,205,68,301],hasse_diagram:[29,304,163],siksek:65,one_radical_difference_famili:247,arg0:168,replac:[229,7,80,241,84,101,262,286,272,256,22,184,30,108,190,35,195,42,285,122,163,128,301,306,61,142,143,144,146,222,154],arg2:168,gaussian:[171,43],dancing_linkswrapp:[183,40],recursivelyenumeratedset:[276,158,147],year:0,operand:[91,298,196,163,190,294,71],"_test_categori":21,happen:[253,276,211,84,304,283,286,184,185,30,298,68,90],extendedaffineweylgroupwfel:241,subsets_pairwis:[111,163],p_per:285,shown:[286,40,272,256,78,283,264,307,7,140,101,217,84,221,11,211,35,319,285,173],quivermutationtype_reduc:35,space:[],"_affinegrothendieckpolynomi":77,tesler:92,rational:276,fully_equ:184,ibidem:272,setpartitionsrk:[19,169],greig:[195,268],follows_tableau:180,cart:178,caru:130,rotate_ccw:212,algebraswithbasi:[305,68],argn:190,card:253,care:[253,286,30,137,283,59,48,82,84,186,231,176],graphics3dgroup:276,chose:165,hanani:[144,129,268],arnaud:[311,59,231,42,307],first_desc:[143,82,241],convert_empty_dict_labels_to_non:304,inject_weight:302,oa_9_1078:268,genericcombinatorialspeci:[72,91,1,246,196,161,284,318,159,66,294,107,273,71],overlap_partit:42,lambda:[5,6,7,206,11,13,227,320,265,143,27,32,37,108,42,262,52,56,57,61,231,68,73,75,76,80,82,83,84,88,89,281,93,289,101,106,194,122,163,47,130,132,140,142,147,160,45,243,165,167,141,171,182,184,190,192,201,203,204,9,207,218,220,221,222,223,44,229,234,235,236,237,238,239,240,241,247,269,252,253,254,272,256,307,258,259,264,21,275,276,277,280,283,115,285,286,288,291,293,172,302,304,33,306,310,311,312,313,314],insertion_tableau:117,directli:[214,228,229,4,243,164,241,83,206,141,11,169,171,249,14,269,253,286,265,272,256,257,180,259,309,48,184,185,186,188,190,35,155,113,283,163,49,207,295,82,12,258,208,242,304,322,140,218,92,22,313,314,153],"_block":137,yourself:133,ring:[],poker_hand:253,as_polyhedron:276,size:[5,7,102,17,19,22,30,35,37,40,42,262,54,56,57,59,61,92,63,66,68,72,74,268,78,80,93,98,99,15,18,43,114,117,122,163,127,128,129,189,137,138,140,143,198,146,147,12,165,166,169,171,172,173,180,48,2,185,186,131,190,195,261,278,201,297,211,212,214,217,222,224,229,208,242,247,260,253,272,256,307,258,144,266,276,283,115,285,286,293,294,298,300,301,304,306,308,311,319],sheet:56,partitiontuples_level:293,caught:143,entries_by_content_standard:180,nonintegr:218,f_4:291,silenc:184,max_length:[253,22,306,142,312,317,225,130,269,154],ns_macdonald:[12,218],orderedsetpartitions_scomp:242,ariti:33,arith:[171,307],especi:[185,253,269,42],bcdbcdbe:184,reduced_word_lexmin:286,derivative_with_respect_to_p1:68,mathworld:[306,144,7,171,286],from_subset:22,iterative_pre_order_travers:84,orderedtrees_s:30,partition_function_:223,xml_sourc:125,than:[5,7,11,270,14,19,22,26,30,35,40,42,46,143,262,52,56,57,74,60,61,62,65,68,225,33,75,77,321,86,87,88,92,286,282,98,99,122,163,128,132,140,257,144,147,155,158,160,243,164,165,168,169,268,171,180,48,184,185,186,190,205,195,261,201,203,206,207,208,212,220,222,228,229,241,247,249,251,253,296,272,256,258,260,269,276,283,115,285,172,301,304,305,306,308,311,312,317,319],png:[276,319,217],"2min":268,foata:[286,308,42],mlttorcbijectiontypeb:10,babaabaaab:42,f_n:171,input_pv:125,bh1994:225,applet:217,old_transit:184,refinement_splitting_length:22,setpartitionsbk_k:169,pierifactor:[44,73,45,239,240,225,227],dynkin_diagram_automorphism_of_alcove_morph:277,largest_available_k:[144,251,261],youngrepresentations_orthogon:75,number_of_invers:[286,212,42],loops_iter:308,"__getattribute__":56,anywher:150,virtualklebertre:[207,310],canonical_representative_of_orbit_of:87,ababababcc:311,notimplementederror:[155,5,7,247,170,171,88,256,312,180,184,266,277,40,42,261,278,317,291,295,130,131,57,59,311,143,144,66],buchkreschtamvakis03:52,oa_20_544:[144,268],mauduit:42,engin:269,krrcsimplylacedel:[220,310],dual_coxeter_numb:[234,235,236,237,238,239,101,240,291],characteristic_polynomi:[300,189,163],permutations_mset:[286,68],particl:253,colored_vector:42,hhl06:218,"0x7f26efbd9e60":302,aaaaazaaaaaaaaa:42,begin:[76,5,165,321,11,90,253,93,0,256,307,184,21,108,132,42,283,115,299,288,272,133,56,137],hungaria:304,importantli:24,parkingfunctions_n:128,price:[141,269],t_action:61,elements_of_depth_iter:[147,163],bender_knuth_involut:[122,7],guibert:285,default_prec:306,renam:[155,56,304,283,140,92,141,269],affine_grassmannian_elements_of_given_length:276,format_state_label:184,combinatorialfreemodul:[228,77,4,309,83,214,141,169,14,249,16,286,272,258,259,186,188,155,193,283,243,49,295,297,298,305,322,140,61,92,314,68],finitewordpath_2d_iter_with_cach:311,mro:[30,302],sunset:184,spin_polynomi:117,kr_type_cnel:106,disjoint_union:[184,163],bursid:222,german:[258,260,14,68,249],aabbabbab:311,pathgraph:163,planar_diagram:186,concurr:88,peano:147,index_set_bipartit:291,counit:[298,68,272,77,283,140,201,297],fifth:160,next_conjug:0,onli:[4,5,92,6,7,11,13,14,16,43,22,23,24,30,34,35,37,40,42,50,49,107,52,55,56,57,70,61,62,65,68,69,72,33,268,77,80,81,83,84,87,90,281,93,289,0,101,18,106,111,113,120,122,163,127,129,130,189,132,133,137,140,142,143,144,147,153,155,160,182,271,164,141,169,171,178,180,48,184,185,188,190,205,195,261,200,317,208,211,217,218,220,222,228,229,262,241,214,247,249,269,253,272,256,307,258,259,260,264,21,266,276,280,283,115,285,286,288,290,291,295,282,298,300,305,306,322,309,310,311,314,319,243],shuffleproduct_overlapping_r:34,kdual:106,"0x7f8fbe338488":[],krcry:281,ismorph:310,charcat:222,joli:42,abbabaabbaababbabaababbaabbabaabbaababbaabbabaabab:[311,36],use_ljcr:266,katabol:7,to_charact:75,"_left_to_right_multiply_on_right":286,oa_from_pbd:[144,268,195],samuel:[18,148,185],delsarte48:43,cannot:[229,268,160,238,241,84,269,253,286,112,272,307,180,184,176,190,283,122,163,132,299,137,306,140,144,231],a000326:56,e_str:[254,296],aaabbc:5,mr2167475:306,a2xg2:[228,160],lengths_unioccurrent_lp:42,krtableauxtypebox:281,bugfix:130,n_action:285,mathemat:[229,268,78,164,165,247,88,295,269,43,253,286,272,307,143,2,184,106,283,41,42,7,285,80,203,291,163,262,129,130,189,0,137,310,306,218,142,144,65,68],product_gener:289,hlqp:[83,283,68],with_final_word_out:184,gindikin:[296,108],kr_type_c_with_categori:106,concern:[228,195,251],right_cc:171,rsk_data:231,gian:283,block11:184,block10:184,south_piec:52,root_lattic:[155,277,276,143,6,119,101,241,108,205,142,132],chapoton:[256,84,143,24,185,30,16,43],takagi:310,a051959:56,blame:133,algebraic_equation_system:66,realizationscategori:201,crystaloflett:[50,290],javier:184,asm_compat:212,latex_diagon:256,from_shape_and_word:[224,122,7],pertain:68,coeff_of_m_mu_in_result:68,to_matrix:[262,286,75,193,212],groupbi:[206,184],ronco:[286,285],finitewordpath_dyck_str:311,tutori:[],sum_of_term:[281,283,218,141,207,68],cyclegraph:137,comet:306,find_disjoint_m:0,reindex:218,area_sequ:[128,256],overview:[127,250,6,276],partitiontupl:[306,301,293],pelantova:42,dispatch:180,lacim:[305,42],sum_of_finer_composit:201,is_automaton:184,plot_alcove_walk:[143,276],caret:178,save:[276,306,217,184,311,35,319],harmless:277,immutablelistwithpar:21,e_hat:61,invers:[],number_of_desc:286,"_test_reduced_word_of_transl":277,post_order_traversal_it:84,mudom:143,thwart_lemma_4_1:[195,251],non_decreasing_parking_funct:2,rubi:33,jacobi:[306,68,211],associated_coroot:[143,155,295,119,259],klebertreenod:207,"_multipli":214,"1mn":268,sort_kei:[30,48],f000000000000000:84,thesi:[311,300,272,287,7,185,144,225],abcdabcdabcdabcdabcdabcdabcdabcdabcdabcd:231,bour:241,spin_minu:228,barp_system:129,euler_phi:56,eig:[5,218],llt3x:4,cls1:137,cls2:137,h_old:184,metric:141,"pelantov\u00e1":42,henc:[77,160,5,241,141,13,87,171,269,253,307,180,100,21,277,283,115,285,291,163,132,298,62,147,222],right_rot:285,uncov:133,equal:[5,6,7,225,13,43,22,148,26,27,30,34,35,40,42,262,52,56,57,58,59,61,62,68,77,84,87,93,282,101,18,106,176,122,163,128,130,137,140,180,144,146,155,160,161,162,165,141,0,48,184,185,190,195,201,126,206,207,211,212,287,218,220,222,223,241,242,272,256,307,258,21,280,283,115,285,286,290,293,301,304,306,309,310,311,312,313,315],eras:[5,253,286,59,184],symmetricfunctionalgebra_class:[280,116,322,174,258,49,14,249],lin_ext:304,"0x7f27192295f0":236,develop:[22,242,144,229,42],list_definit:125,partitionalgebra_bk:169,standard_permut:[122,7,286,42],k_kschur:298,knuth:[],document:[75,5,7,165,241,83,84,251,43,93,256,307,99,184,269,190,37,283,278,286,136,125,127,299,33,306,59,140,62,144],bernoulli_polynomi:171,finish:[253,184,104,147,125,269],closest:90,branchingrul:160,"_space":228,acdb:42,siegel:[5,42],"0827v5":61,file_loc:125,semistandardskewtableaux_s:122,dabec:148,weibel:88,q3_minus_one_matrix:88,inconsist:141,from_exp:306,felikson:35,prellberg:35,end_point:311,standard_quiv:[35,217],dm_48_9_1:268,refdict:205,base_categori:201,row_m:272,demazure_lusztig:228,abund:[253,56],staircas:212,bitmap:276,touch:[137,306,128,195,256],binary_27:184,semistandard_insert:285,temperleyliebalgebra:186,inner_shap:[180,117,106,122],ls90:7,versu:[277,56],europ:[117,306],struct:[257,146],"0503436v2":78,mignott:65,jackpolynomials_gener:309,identif:[283,184],treatment:253,versa:[211,76,180,117,7,201,264,310,185,122,106,225,293,224,68,306,301],bbababbaaba:42,real:[228,93,301,42,253,5,276,307,286,184,241,311,161,186,143,170,20,189],northeast:[211,58,7,52,306],increasing_root:185,pm_diagram:106,hypothesi:307,dcba:42,outermost:285,rolf:195,graph_str:163,dyckword:[256,285,185,30,128,47,269],eltlong:153,psu:209,yangbaxtergraph_partit:288,tamari_lattic:[164,163],allow_label_non:184,abcaccab:42,samelson:228,benefit:[253,147],cartantype_standard_untwisted_affin:[44,73,45,291,204,194,227,252],output:[],min_linear_extens:185,combinatoir:[5,185,311,256,42],kirillovreshetikhingenericcryst:106,td2:144,td1:144,reduced_word_of_transl:[276,277,218],a10:291,nonzero:[228,195,272,22,57,7,122,101,144,141,184,147,243,68],identity_set_partit:186,abacabaabacababacabaabacabacabaabacababa:307,resolvable_balanced_incomplete_block_design:[80,17],finiteword_callable_with_cach:[311,231],asap:286,pss13:222,fig_siz:[319,217],fulli:[212,287,184,21,61,163],ambient_highest_weight_dict:106,raum:206,"throw":[277,40,291,0],artin:61,forget_cycl:286,src:[175,42],central:[253,42,56,258,259,306,61,241,283,203,184,222,313,68],greatli:163,simplicialcomplex:163,get_vacancy_numb:220,scandinavica:65,shardposet:[300,189],sg2011:7,chop:256,rising_factori:171,degre:[],symmetricgroupweakorderposet:189,zee_hl:280,module_gener:[275,281,55,21,221,290,26,310,9,220,106,10,11,108,207,203,191,296,153,132],morphism:[],affinizationofcryst:9,unioncombinatorialclass:171,cms2012:253,elementari:[],finitewordpath_2d_tupl:311,ndpf:2,gray_cod:[190,184,102],garstan1984:286,input_alphabet:[190,184],bruhat_succ:286,your:[253,276,184,42,160,22,283,278,137,61,30,266,11,163,293,154],nonattack:12,loc:7,log:42,area:[301,256,306,311,128,269],aren:74,start:[12,312,268,78,5,237,7,165,240,241,244,264,13,171,150,262,90,253,93,289,272,256,217,22,303,184,185,21,183,269,108,283,277,276,195,42,261,238,200,285,286,239,122,203,291,163,128,82,52,189,132,56,287,306,307,140,218,311,143,144,319,151],epsilon_successor:184,low:[],lot:[276,208,301,56,287,306,7,184,190,62,30,13,88,251],subdivis:302,startpoint:311,fsmq:184,incidencestructur:[137,144,278,146,80],symmetric_macdonald_polynomi:218,polut:276,respec:261,setpartitionspk:[19,169],arm06:143,satur:180,freudenth:228,act_on_classical_ambi:313,oa_10_1620:268,stanford:128,"default":[],adjacency_matrix:[184,90],alcove_walk_sign:241,meet_matrix:[29,304,163],fsm8:184,fsm6:184,fsm7:184,fsm4:184,fsm5:184,fsm2:184,fsm3:184,fsm1:184,connected_compon:[11,163],decreas:[],a22222:42,leroux:41,graphpaths_:200,antenna:35,ncsymorncsymdualbas:297,mathematica:[199,65,184,310],wordpaths_cube_grid:311,compositional_invers:78,partition_class:306,valid:[229,76,77,237,164,242,269,286,296,256,143,220,21,108,190,40,7,122,125,128,52,132,33,58,62,180,144,223,293,306],enumcomb1:[29,163],finitewordpath_north_east_list:311,you:[228,229,160,6,7,80,81,208,141,11,171,88,269,91,253,286,150,293,217,22,24,261,48,2,101,28,30,266,176,283,190,205,37,276,195,184,42,196,164,199,278,285,165,317,163,294,20,12,130,131,132,299,319,277,56,137,306,140,311,304,144,231,146,312,154,71],cardinality_using_hook_formula:7,"0602368v1":185,full_output:184,kronecker_product:[283,68,201],docstr:[286,306,48,184,30,61,190,171],polynomi:[],peal:256,peak:[22,286,256],quivermutationtyp:[35,319,217,120],reduc:[],neighbour:[253,147],integervectorsmodpermutationgroup:[317,87,158],up_to:35,inside_corn:306,timo:[5,93],gj07:307,first_pos_in:[231,42],order_polynomi:163,falling_factori:171,transducer2:184,transducer1:184,finitewordpath_cube_grid_iter_with_cach:311,correl:184,deprecationwarn:[229,7,171,253,286,289,256,307,184,187,176,42,115,119,46,291,177,211,137,138,306,310,311,63,147,68,69,153],infinitycrystalofnakajimamonomi:221,cameron:88,automorphism_on_affine_weight:106,has_conjugate_in_classp:5,qsym:[],abaababa:42,p378:88,articl:[229,75,162,0,7,165,81,242,247,171,88,260,57,43,185,93,178,272,269,143,24,184,29,173,190,35,193,276,195,42,253,285,119,291,163,262,212,56,137,305,70,217,33,310,144,63,222,223,286,306],extended_dynkin_diagram:228,hadamard_matrix:[171,81],skew_partit:211,skip:[4,83,13,14,249,269,253,258,78,184,29,21,188,42,201,122,163,49,130,304,322,309,310,92,147],classicalcrystaloflett:290,quasigeometr:65,crystalsoftableaux:23,nonprim:56,is_standard:[122,7,301,166],mechan:[283,171,6,310,307],veri:[268,78,5,208,171,269,253,272,184,29,266,173,42,291,206,128,129,189,301,137,287,306,140,62,257,144,146],mpz:[],abacaba:[312,42],cartesian_product:[247,253,299,141,184],d_p:283,emul:[218,184],a029552:101,wf_to_pw0_func:241,d_m:280,node1:[132,66],conjugacy_classes_iter:286,anal:[92,93],node2:[132,66],krttorcbijectiontyp:[197,10,109],node4:88,dimens:[],unmark:180,invariant_degre:228,row_lengths_aux:211,to_ordered_tree_right_branch:[185,30,285],bilinear:[272,68,140,201,160],crystaloftableaux:[228,47,21],cd96:144,borwi2004:260,ast:[306,211,291,293],combinatorial_maps_in_class:20,check_dtrs_protocol:125,bernhard:217,consecut:[268,224,40,256,42,56,22,306,278,7,102,312,122,253,11,163,211,130,269],alternating_sum_of_fatter_composit:201,essenc:178,a000302:56,pacif:[262,130],modular:[306,101,29,65,293,189],excess:56,pythea:[42,307],abstractlabelledclonabletre:[30,48,285,84],modifi:[],quiver_mutation_typ:[35,319,217],etext01:56,trunc:21,"\u0161":42,min_length:[253,22,306,59,225,269,154],divisor:[78,163,309,222,247,56],ahead:130,ababaabababaababa:312,cartantypefold:[70,291],fundamental_chamb:[143,276],amount:[257,130,42],doctest:[228,229,165,77,234,7,80,20,83,214,141,10,13,87,171,269,253,286,47,272,256,307,22,187,309,48,266,184,15,104,183,106,176,287,42,319,283,297,115,285,119,46,289,317,291,271,177,189,132,298,300,211,301,137,305,306,140,310,311,144,63,313,147,138,68,69,153],hazwitt1:[260,272],divison:184,symmetricfunct:[228,77,4,7,165,309,83,141,174,14,249,43,297,272,180,260,78,27,188,280,116,283,115,201,49,128,47,12,298,306,322,140,218,142,92,258,314,68],"2201v1":162,hrep:24,data_typ:217,father:253,centralizer_s:[83,306,280],mezzarobba:253,combinatoriallogarithmseri:[41,78],glitch:[68,243],subtitut:307,famili:[],is_in_classp:5,dangl:42,helper:[],to_symmetric_function_on_gener:140,almost:[155,42,56,143,218,82,141,146,319,269],formul:[180,65],vertical_dominoes_remov:106,irreduc:[228,75,160,5,237,241,143,101,205,35,6,283,119,290,291,293,127,301,302,306,61,221,222,68],taken:[7,241,16,93,22,184,185,30,35,276,291,163,128,82,52,211,305,306,59,140,62,146,68],markov_chain_simplif:184,delta_derivate_right:42,vec:282,krtableauxspin:281,line_width:185,labelledrootedtre:[84,48],sum_of_partition_rearrang:201,"3ex":[321,184],reading_tableau:306,nondegener:65,partitionsgreatesteq:306,k_split:306,remove_extra_fixed_point:286,row_stabil:[7,301],histori:[171,269],deeppink:40,mults1:[68,140],stepan:[5,93,176],mults2:140,linearorderspeciesstructur:284,construction_q_x:[195,251],hht:12,q_project:[218,142],a001477:56,firmli:276,"_from_hexacode_aux":84,ti_on_basi:[142,82],phrase:57,magenta:[311,40],coalgebra:[298,272,283,140,68,193],cartesian_factor:141,koik:293,anoth:[228,160,5,7,165,241,83,84,247,184,169,13,171,260,253,286,272,22,99,48,101,185,30,186,106,34,193,276,195,40,42,283,285,201,291,163,208,209,306,140,218,311,143,220,68,180],adjacent_form:[190,184],mcdp:[92,283],mcdq:92,min_slop:[22,306,130,269,154],mcdh:[92,68],mcdj:[92,283],to_tableau:[281,58,7,21,122,106],type_c:[295,238],type_b:[295,239],type_a:[295,291,240],type_g:[234,295],type_f:[235,295],type_d:[295,237],type_i:[291,232],type_h:233,highestweightcryst:[275,139],dokl:58,register_isomorph:283,construction_method:307,almost_positive_root:[143,319],tij:180,mutation_finit:35,stabil:[276,301,143,305,306,7,61,241,11,247,68],read:[12,160,7,90,281,286,272,256,307,2,184,21,108,190,113,42,117,285,201,122,291,125,128,129,130,300,301,56,305,306,218,311,315,287,149,153],spectra:286,twisted_demazure_lusztig_operator_on_basi:142,zerodivisionerror:171,mykytiuk:272,hook_polynomi:306,"_self_to_":283,dream:268,"m\u00e9moir":42,help:[276,195,268,21,218,20,311,84,269],coxeter_matrix:[205,152,291,232,233],soon:[137,171,68,147],permutationspeci:[196,71,78,246,66],hierarchi:311,g2xc3:160,annoyingli:276,paramet:[59,76,4,5,264,293,7,80,240,241,83,141,184,269,247,88,173,43,185,286,280,251,307,22,160,266,101,29,21,186,33,218,176,283,190,309,301,195,115,42,261,164,117,278,46,122,291,163,211,128,82,130,131,272,298,54,258,208,256,0,137,57,306,74,60,217,61,142,92,143,144,310,248,224,68,180],get_valu:[286,211,76,256,180,117,7,264,310,185,21,122,291,293,224,306,301],bbbba:307,"0102066v1":286,"schr\u00f6dinger":5,finer:[286,229,272,22,140,201],ced:184,t_complet:[306,68],fos09:[70,106],food:276,sentenc:150,first_lett:307,extremesofpermanentssequ:56,sssr:58,foot:68,q_factor:285,symmetricfunctionalgebra_homogen:49,rad1979:272,proj2:160,proj1:160,similarityclasstyp:222,mutation_classes_n:35,submultiset:74,standardtableaux:[253,7,301,61],iff:[42,307,143,6,185,319],a001109:56,spin_polynomial_squar:117,inv_lex_less:42,integerlistslexit:269,inplac:[288,137,278,119,184,217,30,319],ispoor:150,ifip:42,heavi:209,abaaabaaabaabaaabaaabaabaaabaabaaabaaaba:42,state_from:184,quantum:[155,277,301,4,218,165,61,310,203,11,108,293,207,132],beyond:303,event:125,use_vacancy_numb:220,paths_from_source_to_target:200,yang_baxter_graph:288,repunit:56,robert:[171,88,229,286],cubic:62,demazure_lusztig_eigenvector:82,publish:[35,229,268],jolla:[266,173,17],plethsym:272,labb:[93,40,307,5,59,286,311,312,192],motzkin:[269,56],matha:[306,7,301,321,293],tev2007:[162,140],pub:56,reason:[113,300,301,42,160,5,306,253,285,228,62,22,298,146,291,163,84,293,68,251],base:[],asf:130,asd:5,ask:[91,253,196,180,283,261,308,311,144,307,294,71],qsort_r:146,southend:7,earliest:184,asm:[223,212],basi:[228,77,4,5,162,236,6,165,240,241,83,214,141,11,169,14,249,16,286,297,272,256,21,143,98,260,78,27,234,186,188,218,235,205,309,155,193,276,277,280,116,283,115,201,46,163,49,295,82,298,304,305,306,322,140,61,142,92,258,314,259,293,68,243],unreduc:108,propriet:5,launch:253,voor:56,american:[307,285,203,65,68,43],kung:222,hyperoctaedr:308,assign:[12,93,256,42,303,137,285,165,101,311,180,141,146,66,171,269],min_support:225,singleton:[72,286,230,41,78,161,7,201,66,154],weight_spac:[281,277,141,276,143,259,291,6,218,142,21,221,11,207,191,243,225],obviou:[301,160,306,165,184,185,68,260,269],jaapspi:56,schubert:[],misc:[],basis_b:305,placehold:296,random_element_plancherel:306,to_labelling_permut:128,miss:[195,112,268,42,57,286,184,309,144,163,190],weaktableaux_bound:180,a000796:56,"_floor":[130,269],sut2002:306,edgecoloredorderedtre:30,stori:253,"433013cm":93,abccc:311,b_matrix_class_it:319,latex_bounce_path:256,expand:[228,78,7,165,140,83,14,249,253,272,258,260,27,280,283,115,163,49,297,12,298,306,322,217,218,142,92,314,68],st2:7,setshuffleproduct:148,scheme:[93,272,0,291,35,260],post_order_travers:[185,84],"0x7f8fbe3ad7d0":[],ncp:256,q_subgroups_of_abelian_group:43,tiling_solv:40,is_determinist:184,jordan:[222,100,43],grew:127,lp2008:132,sta:[272,256,258,260,306,7,185,122,283,14,68,249,262],cbcd:5,lament:163,hall_littlewood_famili:83,greig99:[195,268],stt:301,semistandardskewtableaux_size_weight:122,tau_plus_minu:143,kindli:268,str:[228,6,82,101,171,150,307,143,184,275,42,261,115,163,52,217,218,311,312,231,319,225,11],toward:[253,276,143,70,241,146],grei:306,randomli:[253,59,7,301,163],structure_class:[149,66],brualdi:171,ribbontableau_class:117,versatil:307,element_ascii_art:[76,264,310],"null":[133,143,259,218,142,243,9,82,130],root_to_leaf:[30,285],lie:[],unintend:59,outbound:184,bz2:125,lib:127,lin:56,raw_signatur:108,multichoos:[],liu:61,liv:16,exampl:[],useless:[195,261,137,278,80,144,88,131,266],tamari_interv:[185,285,256],list_of_design:125,on_duplicate_transit:184,liz:52,honeycomb:52,kac:[277,254,143,291,26,101,119,9,106,203,11,310,13,35,142,69,132],monatsh:42,macp:92,longest_common_suffix:42,homolog:163,north_east:[311,52],sloanesequ:56,rho:[276,277,75,307,143,235,236,115,82,205,297],alpha:[155,6,241,218,254,0,307,143,259,24,48,184,108,205,276,277,42,119,296,291,243,129,132,287,306,61,142,311,312,221,319,82],to_kirillov_reshetikhin_cryst:281,a001045:56,clear:[195,129,272,256,22,306,7,140,309,122,291,68],"_alternate_is_lequ":304,hanani60:129,clean:[253,306,7,15,171,295],knu1970:262,bzl:23,markowski:286,chebyshev:56,get_stream:289,phenomenon:[],size_alphabet:5,v12:129,"_one":214,misnom:130,tree1:185,tree3:185,tree2:185,matrix_similarity_classes_length_two:222,abaa:[312,42],dehay:306,karhumaki:42,is_row_and_col_balanc:0,longest_increasing_subsequence_length:[286,256],columnwis:21,coerc:[286,319,42,22,61,241,21,291,190,191,295,297],markoff:[42,307],pretti:[281,55,211,301,256,21,180,58,7,2,166,265,122,106,293,50,128],duncan:68,polyhedron_qq_ppl:24,has_stat:184,axel:68,edelman:262,periodic_point:5,crystal_of_letters_type_e7_el:290,weighted_s:[92,306],king:[253,68,160],nativ:[311,253,171],three_factor_product:[195,251],finitejoinsemilattic:[29,163],basement:12,doubli:154,"_functor_categori":201,ca1954:179,shallit:5,"0x7f26fb1787d0":167,positive_roots_nonparabol:143,evaluation_dict:[122,7,42],prefix_function_t:42,pete2013:300,initial_data:147,skew_tableau:[301,180,117,7,122,224],oa_11_254:268,hs3x:4,monomial_from_smaller_permut:61,close:[253,300,256,276,306,7,140,184,217,311,186,125,319,132],"0x7f270885a6e0":45,whatsoev:163,latex_color:256,unoptim:29,mckai:[268,160],won:[205,276,243,147,259],tp_krcry:220,tolli:286,moretti:171,woa:59,block_siz:137,catalogu:164,ranker:[],mixedintegerlinearprogram:[137,163],numer:[228,253,56,5,160,48,309,184,185,92,171,319,16],zs2g:61,isol:[184,42],combinatorial_logarithm:41,lowercas:165,to_symmetric_function_on_basi:140,distinguish:[253,56,48,100,140,184,241,185,198,313,218,163,68],letters_to_step:311,delimit:[276,150],aima:283,myforest:147,sty:184,lusztig:[],forgotten:[283,68,48,140,280],descent_algebra:305,use_coroot:143,is_slend:163,from_endomorph:241,extendedaffineweylgroupw0pvel:241,jeff:166,directive_word:307,ehrenfeucht:42,header:133,ft00:163,circled_entri:58,from_morph:205,is_permut:212,b_0:144,b_2:144,disjointunionenumeratedset:[185,114,158,253,48,7,166,18,30,191,47,285,269],completegraph:163,irrationn:307,set_partit:[186,229,169],empti:[],gnew:106,adebc:148,oss13:281,lw21:98,lw23:98,diophantin:65,elizald:256,a000670:[242,56],b_j:137,b_k:[19,169],azaazaaazaaazaazaaaz:42,bij_type_a2_odd:85,imag:[312,75,160,5,7,241,141,14,249,171,281,286,265,42,256,217,143,260,26,27,106,277,40,280,116,283,115,201,319,288,122,203,243,49,262,297,272,298,55,311,287,306,59,140,61,142,92,258,220,313,307,68],inverse_automorph:265,coordin:[12,5,7,88,260,253,0,256,180,184,185,106,276,195,40,42,122,293,52,211,301,58,311,143,144,306],imap:253,aaron:186,"_canonical_label":137,look:[7,13,167,247,88,89,251,253,93,272,143,184,28,90,205,35,276,261,285,286,291,262,130,301,306],tamari_pr:285,"while":[228,160,84,247,88,260,269,253,286,289,272,307,258,182,220,184,21,266,195,0,198,285,201,287,291,129,52,133,319,57,306,140,61,62,257,144,146,222,68],phalanster:75,empt2:1,xyss:5,guessed_group:57,loop:[253,212,42,217,143,306,308,198,184,208,304,186,141,147,163,127,295,231,132],pack:[137,247,40,212],bk_promotion_inverse7:7,readi:[253,163],jpb:309,herein:61,costli:171,standard_desc:7,quadrat:[228,42,218,81,142,61,90],bbgl08:42,refinement_split:22,gs1:289,gs0:289,gs2:289,cyclic_permutations_of_set_partit:229,belong:[268,77,293,7,171,286,143,48,30,266,34,195,115,278,163,131,301,137,57,306,142,144],from_core_and_quoti:306,halverson:186,tensorproduct:[254,23,218,310,21,263,106,11,127,50,153,132],coeff_lp:[162,140],octal:176,infinitycrystalofriggedconfigur:76,xxxsy:5,conflict:[18,190,304],palindrome_prefixes_iter:312,imagin:128,optim:[253,286,78,137,306,218,142,141,65,206,171,269],dict_linear_combin:248,jcta:[260,256],wilson:[195,268,80,208,144,247,251],aababaaaababaababbabaababaababbabaababaa:5,testpi:140,temporari:[283,171,125],user:[],"__add__":22,north_piec:52,symmetric_group_represent:75,oa_7_74:268,rchighestweightel:[220,264],todorov:268,www1:272,scriptsiz:108,abcabaabcabaaaaa:311,dyckwords_s:256,tamari_invers:185,a001189:56,chord:[286,269,56],a001181:[18,285],uselessli:62,associahedron:[],hazewinkellambda:272,siddhartha:218,hag08:128,kr_type_box:106,from_height:256,shortcut:[228,291,140,176,253],informat:312,hall_polynomi:100,subsequ:[286,301,256,56,22,33,137,190,247,243,13],grigori:306,march:42,abcabc:[311,42],"7pd1v1b5":7,molecul:253,minimal_el:[304,285,306,211,163],k_skew:306,game:[37,253,6,40],simultaneous_similarity_class:222,marcu:42,characterist:[],setpartitionsakhalf_k:169,block_design_check:137,iterated_left_palindromic_closur:42,signal:42,number_negative_on:212,promotion_oper:7,resolv:[],factor_on_left:[141,248],mutually_orthogonal_latin_squar:[144,261,17],valenc:84,popular:163,yyxyxyxyxyxxyxyxyxyxyyxyxyxyxyxxyxyxyxyx:307,neumann:286,g2xa1:160,strict_coarsen:229,creation:[],some:[],instal:[56,137,120,311,163,127,88],nonattackingfil:12,track_numb:184,baabbaab:42,"0x7f8fd3ac7578":[],lodayronco:285,productspeci:71,is_symmetricfunctionalgebra:68,pisot_eigenvector_left:5,"__o__":285,jump_list:128,run:[4,92,6,7,10,11,13,14,227,22,23,24,29,32,39,42,49,50,56,61,62,231,68,73,76,77,83,84,89,90,281,286,174,103,104,105,194,109,113,114,117,163,189,140,142,143,147,148,155,45,243,165,167,141,170,171,175,178,180,181,48,322,184,185,188,205,197,199,201,317,204,191,206,287,217,218,220,221,44,229,232,233,234,235,236,237,238,239,240,208,214,244,310,249,269,252,253,255,256,307,258,259,260,21,275,85,280,285,303,290,291,293,295,272,298,300,301,304,33,306,308,309,101,312,313,126,319],stem:291,step:[164,277,82,11,87,262,269,281,286,0,256,143,2,184,102,104,109,190,52,113,195,42,253,197,7,128,208,130,55,211,306,218,142,311,220,319],integervectors_al:130,mut_typ:35,subtract:[289,56,7,140,185,243,190,207,68],franco:[93,312,75,272,42,307,59,201,288,231,176,286,315,192,52],faith:[143,306,285,243],subsquar:0,zs1_iter:209,scalar_qt_basi:92,shini:276,dm_36_9_1:268,block:[],dlxcpp_rows_and_map:0,weizmann:306,standardpermutations_avoiding_312:286,abbaabababbaabbaababbaababbaabababbaabba:307,pw0:241,bbb:[59,154],within:[253,286,150,256,42,283,7,165,184,269,319,90,272],finiteword_class:[311,231,42],eomega1:218,brundan:[301,293],ensur:[277,56,22,7,286,122,147,247,251],is_const:[289,182],pentagon:[189,56],colabel:220,dot_sag:35,s0001870898917595:285,triangl:[253,212,256,56,311,266,244,291,35,88,52],coweight_lattic:[143,277,6,218],is_regular:222,is_less_than:[304,229,163],with_output:[190,184],add_cel:[306,293],generalized_young_wal:108,hexagonal_grid:311,properli:[276,42,77,180,283,306,7,220,218,82,122,121,243,68,16,269,41],bender:[122,7],hyperov:268,xyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxi:311,njo:151,number_of_recoil:286,newer:306,"5695v2":306,russian:306,lecouvei:106,info:[163,125],utf:175,strong_cov:99,functorialcompositionstructur:294,"_max":66,cue:160,immaculate_funct:140,similar:[],branching_rul:[228,160],r_matrix:106,type_b_affin:73,standardtableautuples_shap:301,composition_speci:91,doesn:[253,286,311,0,5,48,140,185,313,163,171],repres:[228,229,75,160,161,163,7,165,241,83,84,101,169,0,170,171,88,262,90,253,93,272,256,217,143,23,48,186,27,185,30,31,187,173,108,283,191,111,295,184,40,176,42,164,271,222,285,286,120,21,317,291,125,50,231,130,189,132,212,301,242,137,33,306,74,205,62,180,144,221,311,98,149,319,115],incomplet:[],nonsymmetr:[],nab:180,up_list:[306,68,7,293],parabol:[143,306,218,106,11,293,205],polygon:[276,256,56,143,311,291],titl:0,kirillov_reshetikhin:[58,106,11,153,310],accross:276,nap:[48,16],nat:92,as_fold:[70,220,291],dual_fibonacci_til:[311,307],syms3:283,draw:[],node_weight:207,as_sum_of_permut:286,"_len":[311,36,42],grirei2014:[68,260,272],to_ambient_cryst:106,william:[56,260,307,7,122,163,171,209,43],wordpaths_square_grid:311,eval:[205,171,7,212],weak_cov:99,formal:[155,272,78,283,253,48,165,61,144,146,218,222,190,128,260,285,243,291],frobenius_schur_ind:[228,160],split_step:11,abababaababb:311,"_graph":[197,104,113,109],stuctur:[185,281,254],orbit:[228,212,5,70,6,218,311,143,317,222,172,87,130],evenli:[],depth:[301,253,319,147,256,84,304,58,285,217,101,62,30,269,108,163,127,111,207,132],input_project:184,olivi:306,oop:291,coroot_spac:[143,6,291],"honor\u00e9":88,partitions_end:306,merced:306,gaussian_multinomi:43,a000110:56,element_constructor:[22,148,306,163,151,269],int_pr_of_s_in_:201,mutation_class_it:[319,217],etait:150,ks3t:298,compact:[228,73,232,233,45,235,236,237,7,239,241,227,252,180,44,234,194,32,238,117,122,290,204,293,301,306,224,69],ac07:[195,268,251],combinatorialalgebraelementold:214,max_coroot_l:155,isbinaryblockdesign:137,highest_weight:[277,101],lettertupl:[50,290],aris:[281,41,253,137,306,104,291,293,295,319,153,301],nichola:[195,251],hughes_plan:88,to_weight_spac:[277,243],finitewordpath_3d:311,kresch:52,trough:[286,147],skew:[],examlpl:169,"_6_":285,perm_gp:[170,171],final_desc:[22,286,42],michael:207,c1xc2:160,v2_b2_k2_icgsa:125,scalar_product:[75,314],kolakoski66:307,input_tap:184,length_maximal_palindrom:42,llms2006:180,only_convers:283,jump:[128,299],annihil:[259,291],input_pars:222,lower_hook:306,hspace:[185,207,321],young_diagram:[211,301,180,117,7,122,293,224,306],cell:[229,7,168,286,256,22,99,184,0,261,122,290,293,189,211,301,56,306,61,180,224,68],experiment:184,completebipartitegraph:163,tableautupl:[],aldorcombinat:[316,78,182,289,66],"0x7f8fbe3c1500":[],a109814:56,stanley_symm_poly_weight:225,iteritem:[40,90,46],matplotlib:[276,93,42],is_sturmian_factor:42,positive_coroot:276,a000009:56,symmetricfunctionalgebra_gener:[83,4,283,309,174,92,188,68],becom:[228,7,80,13,269,253,272,30,266,90,34,276,278,285,163,301,137,305,306,140,61,62,222,68],convert:[12,229,76,77,264,165,241,83,168,184,0,87,171,90,281,286,297,178,272,256,180,99,48,2,101,30,186,190,40,42,253,283,115,285,317,291,163,262,208,298,300,212,74,322,61,310,311,220,222,68],convers:[],genu:[257,0],final_forest:185,"1997plmsv75p99":61,converg:[253,56],setpartitionstkhalf_k:169,nobuki:283,stojmenov:209,chang:[76,264,293,7,217,84,167,141,184,171,89,269,92,93,289,272,256,21,180,23,2,174,185,30,311,190,205,111,37,40,0,253,283,117,285,119,122,317,291,163,128,20,54,319,211,301,56,306,140,61,310,62,257,220,286,224,68,243],hexagon:311,coercibl:170,lamda:52,modern_art:286,danger:286,win:37,bruhat_succ_iter:286,"boolean":[12,75,78,5,322,243,7,80,321,180,11,269,247,171,88,260,90,286,150,272,256,217,22,99,198,184,30,266,189,108,287,190,191,37,276,195,42,261,278,285,201,46,21,291,163,129,131,55,208,137,57,306,60,140,218,248,311,143,144,222,223,68,220],finitecombinatorialclass_l:145,affinepermutationgrouptypeg:287,count_11:184,count_10:184,affinepermutationgrouptypec:287,affinepermutationgrouptypeb:287,weightedintegervectors_al:114,correpond:180,characteristicsturmianword:[42,307],puzzlefil:52,implic:[300,189],fibo:[5,171],crac:311,reduced_kronecker_product:68,skew_bi:[165,272,283,140,201,92,68],jonathan:[306,209],remaind:[37,258,260,7,184,283,14,68,249,130],abababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababababab:311,dilworth_decomposit:163,symposia:80,type_affin:[259,295],ag1988:306,benchmark:286,left_action_same_n:257,y_speci:78,is_planar:[253,186,169],willigenburg:[162,68,272],standardpermutations_recoilsfin:286,permutation_group_el:[246,159],contretableaux:212,all_nod:207,retriev:[143,276,211],coset_repres:241,vertex_model:223,subsets_sk:74,min_siz:137,meet:[253,286,22,285,140,29,304,317,163,88],is_odd:253,back_circul:0,control:[253,301,180,117,7,122,141,224,269],permutationspeciesstructur:246,oss2011:[281,153,310],superposit:42,bispecial_factors_iter:42,gc50:58,d2009:125,sought:253,outgoing_edg:200,georg:[306,186,286],acycl:[],from_vector:[143,155,277,141,132],from_other_uncach:260,narg:253,phi_fgh:141,circular:[35,319,128,217],column_with_indic:69,ladouceur:42,gainer:[41,78],set_gen:182,combinatorialobject:[12,106,2,288,168,149,128,171],a000124:56,pre_order_travers:[185,84],ronald:56,"5ce":80,has_lett:59,decomposableobject:253,antipode_by_coercion:[68,322],is_initi:[289,184,78],phi_inv:42,only_sink_sourc:319,encyclopedia:[253,41,42,56,5,306,307,210,163,247],vertex_color:90,fastest:306,permutation_group:317,endarrow:311,cyclicpermutationsofpartit:286,artefact:277,sz2001:68,aut2:184,aut1:184,affinegeometrydesign:[137,88,17],"3a1006429830221":163,hypergraph:[],compute_aord:289,integer_vectors_mod_permgroup:317,pierifactors_affine_typ:225,rc_infin:76,dm_12_6_1:268,handl:[155,268,78,125,141,174,171,271,286,42,22,160,184,15,21,176,190,276,280,283,285,119,163,172,305,306,143,146,147,68],auto:[309,184,280,43],length_onli:11,publi:305,random_element_uniform:306,argilo:266,p12:122,abaaabaababaabaaababaaababaaabaababaabaa:307,front:[12,140],q_bin:46,oa_7_50:144,beuargl:205,half_turn_rot:52,dominiqu:286,prepackag:184,slide:[306,122,128,42],mode:[319,217,184,160],aspect_ratio:[311,276,40],north_west:52,e_integr:12,a010060:56,"2ed":[268,80,261],upward:[207,285],best_known_covering_design_from_ljcr:17,hlz:83,hly:83,edinburgh:309,w12:[137,114],hlq:[83,283],hlp:[92,83,77,283],combinatori:[],flag_f_polynomi:163,suffix_tri:42,ec2:[272,256,306,7,185,122,262,68],ec1:163,hyperbol:[69,291],a000587:56,heckealgebrasymmetricgroupt:[214,61],special:[78,271,7,241,83,306,167,168,218,13,89,90,281,293,143,259,160,100,220,184,186,269,283,205,35,42,261,164,291,163,82,130,132,301,56,58,253,61,92,144,313,147,70,243],suffix_tre:[90,42],add_piec:52,is_pow:56,influenc:[146,184],meulien:253,identifi:[253,42,259,70,293,285,241,84,186,106,313,163,206,87,269],suitabl:[40,272,160,5,259,307,184,241],cell_poset:[306,211],hardwar:42,thieri:[114,241,22,283,119,218,82,21,291,205,68,69,269,132],ecb:307,eca:307,asm_compatible_bigg:212,manipul:[],kropf:[190,184],update_count:184,transition1:184,transition2:184,internal_coproduct_on_basi:[297,115],print_rul:160,cartantypedu:13,humphrei:228,"_piec":40,to_affine_weyl_right:241,keep:[268,253,289,180,198,185,205,195,285,201,317,163,189,301,137,306,61,220,231,147,319,151],counterpart:[276,195,291,286,142],number_of_noninvers:[286,61],curti:262,geometri:[311,24,88,195,42],"7ex":184,start_point:311,christoph:[92,306,68,285,52],swapper:288,number_of_close_symbol:256,art:[44,73,45,235,236,237,7,239,240,167,13,227,89,252,256,180,102,234,194,283,32,238,117,122,204,301,212,302,224,291],seiden:268,kboundedquotientbasi:77,new_class:184,finitefield:[68,88,201],adjoint:[228,165,272,280,160,258,260,140,241,201,283,14,68,249],perfectli:[62,276],wrapper:[],cells_of_marked_ribbon:180,tight_pag:163,attach:[228,276,300,253,58,48,30,108,293,189],attack:[12,306,7],gurobi:[137,163],is_affin:[44,73,194,232,233,45,291,236,119,239,204,32,13,302,35,227,69,252],pavel:61,final_funct:184,associahedra:[143,24],max_weight:101,"final":[268,160,163,7,214,218,90,253,272,22,184,185,190,276,195,42,293,300,287,306,74,61,180,144],rsk:[286,42,7,306,285,231,262],travi:[229,76,181,7,242,168,10,264,306,281,286,296,178,255,256,21,22,99,27,103,104,105,108,109,113,85,197,115,119,185,122,292,207,262,297,130,132,55,211,212,305,58,140,310,220,69,70,153],extra_preambl:[52,184],isotypeswrapp:149,is_grow:5,rst:[175,224],touch_composit:[128,256],exactli:[72,268,7,208,247,171,173,253,286,296,272,256,307,0,184,185,266,90,35,195,40,42,261,278,122,163,129,131,133,211,301,56,137,57,216,61,142,144,146,224,68,69,306],output_word:184,ext_orbit_centr:222,rss:311,sum_digit:312,ben:[254,218,21,221,10,264,108,260,296],to_skew_partit:22,in_order_traversal_it:285,worddatatype_cal:[311,231,36],naive_internal_coproduct_on_m:272,tilingsolv:40,subwords_wk:151,classical_weyl_to_affin:241,signifi:[286,285],exhibit:172,dinvers:128,similarity_factor:106,julian:[144,268,195,251],graetzer:163,is_quasiperiod:42,kitaev:256,keller:217,need:[76,77,160,5,236,7,165,81,82,247,141,11,169,13,171,90,281,286,265,269,21,180,48,266,101,30,186,106,218,176,205,277,276,195,184,253,283,285,288,122,317,163,207,262,20,54,319,301,137,57,306,61,142,62,220,221,146,147,290,68,151,225],mset:[31,286,171,15],mathscinet:[199,310],screw:[283,287],jpa:309,check_poset:185,"_last_index":36,dictionnari:[277,74,163],parkingbeck:128,crystalbacktrack:127,verticl:106,dm_24_8_1:268,pyx:[],ariki:293,tab2:7,ncsymbasis_abstract:[297,115,27],a111787:56,finitewordpath_2d_list:311,tokuyama_coeffici:58,"_states_":184,fsmemptywordsymbol:184,rigor:253,"0x7f26efbbc938":44,ghhg:307,is_cub:[231,42],laurent:[253,319,218,142],url:125,inde:[268,84,141,61,171,286,272,22,144,184,185,101,276,283,278,190,122,163,127,33,306,322,218,142,62,198,68],from_height_funct:212,base_tre:207,constrain:[84,144,319,217,306],h_vector:163,output_tap:184,test_rsw_comm:61,"12c":80,difference_matric:131,verbos:[197,113,195,160,137,57,261,184,287,104,144,251,109,247,35,173],"_base_category_class":201,q3t:77,dm_273_17_1:268,anywai:[276,195,285,269,184],difference_matrix:[268,131,17],order_dimens:163,kr_tableaux:281,tamari_meet:285,tau_i:0,nafweight:184,is_greater_than:[304,163],forev:[40,141,209,231,269],extend_bi:5,baser:236,ausland:[304,163],discontinu:[269,241],obj1:262,"_sign":269,obj2:262,permutohedron_succ:[286,147],bj1980:163,perfectmatch:308,joint:[190,218],longest_common_subword:42,col_annihil:[259,291,243],latex_bracket:141,polyomino:40,ribbons_above_mark:180,haiman:[12,256,7,165,218,142,92,198,225],to_312_avoiding_permut:[285,256],from_major_cod:286,dpg:300,grai:[],get_ord:[141,172,289],hpl:42,contain:[],tau_2:0,tau_3:0,tau_1:0,endomorph:[165,280,42,307,5,260,100,140,218,82,258,201,49,272,14,68,249,43],khomogen:[283,298],stu2008:256,entitl:206,strongtableau:180,check_integer_list_constraint:154,statu:[144,184],aros:[165,310],oa_9_1612:268,current_st:184,tend:[5,276,269],"_f_limit_start":269,state:[],luc:306,hazewinkel:[260,272],is_i_grassmannian:287,mathfil:56,lui:[212,272],neither:[286,256,143,58,184,18,122,295,319],baril:178,tent:82,ks10:108,subsequenti:184,kei:[228,160,6,7,82,141,11,171,248,16,90,253,93,0,307,143,24,184,29,106,205,275,115,42,283,222,120,288,122,145,163,52,212,137,70,74,140,218,142,180,198,231,66,68,243,225],palp:253,kirillovreshetikhingenericcrystalel:106,itertool:[253,192,42,307,137,57,182,231,184,311,247,63,312,206,171,177,36],is_transl:241,cartantype_simpl:[232,233,234,235,236,238,239,240,167,291,13,89],colbourn:[144,268,195,261],near_concaten:22,covariantconstructioncategori:201,jersei:58,standardpermutations_n_abstract:286,iter_initial_st:184,admit:[253,277,241,160,304,310,6,140,218,82,163,87,68,269],is_parabolic_root:143,ami:[231,42,307],groupsemidirectproduct:241,strong_l:99,arms_legs_coeff:306,h2step:52,eponym:163,rouquier:293,kirillovreshetkihintableaux:106,cachefunc:[155,295,205],comparability_graph:163,slowli:[12,171,199],standardskewtableaux_shap:122,addition:[26,184,185,203,291,262,69],mathcal:184,sara:[190,184],cent:56,willi:7,treat:[253,133,41,160,216,306,222,171,68,262],matrix_gp:205,long_el:[205,142,112,82],dure:[285,184,62,84,168,218,190,52],both:[12,229,160,7,165,180,83,84,312,169,171,251,43,185,286,296,272,256,21,22,4,266,184,130,29,30,186,269,190,34,35,41,42,261,200,285,288,122,291,163,262,52,301,56,57,58,253,309,61,92,143,144,68,151,306],ori1:[306,211],ori2:[306,211],coincid:[272,243,7,218,142,184,163,82,291],dm_51_6_1:268,segner:[253,230,56],cartantype_standard_finit:[232,233,234,235,236,237,238,239,240,291],pseudopalidrom:42,setpartitionsbkhalf_k:169,truncatedstaircases_nlastcolumn:212,quasisymmetricfunct:[272,68,140,201,165],add_transit:184,harder:62,return_path:[319,217],hatayama:310,number_of_operand:190,letsgoforeverforeverforeverforeverforev:231,"216506cm":93,print_str:101,schubertpolynomialring_xbasi:314,zeitschrift:[106,225],lambd:[247,57,266,278],stroppel:293,to_ordered_tree_left_branch:[185,30,285],revis:[30,84],scienc:[83,195,211,212,42,162,306,309,7,286,184,185,92,187,283,190,262,285],welcom:[6,7,20,291,111,269],weightspaceel:243,sqrt:[253,276,75,56,117,307,184,171],northwest:[306,58,211,52,212],undetermin:[319,217],almost_positive_root_decomposit:143,http:[228,229,75,78,5,162,163,7,80,81,279,138,268,171,88,262,173,43,253,286,177,178,272,256,307,0,160,182,184,185,266,187,176,17,195,115,42,283,117,222,285,119,46,289,291,125,128,129,209,211,212,56,137,305,306,217,61,310,311,144,63,147,66,316,68,69,153],norm_squar:143,effect:[286,59,42,160,143,74,184,225,163,243,269],permutationgroup_gener:170,permutohedron_great:286,is_simply_lac:[44,73,302,194,232,233,45,235,236,237,238,239,234,204,32,13,291,35,227,69,252],finitewordpath_north_east_it:311,compendium:[217,120,279,51,35,319],extra_code_aft:93,"_letter_cach":36,tamariintervalposet:[185,285,256],valid_input:184,part1:[92,309],part2:[92,309],pisot_eigenvector_right:[5,311],undefin:[220,286,42],list_of_conjug:5,elementary_with_categori:201,sibl:21,"26b":80,rcnonsimplylac:310,distanc:[276,42,143,217,184,180,11,147,224,319,132],mistaken:286,settopath:319,limit_start:269,virtual:[228,265,41,78,70,264,310,220,207,76],increasingli:21,map_item:283,from_core_tableau:180,trudi:[306,68,211],retract_okounkov_vershik:[286,61],finitedimensionalhighestweightcrystal_type:275,deacreas:287,semigroup:[186,147],to_ribbon:122,nate:180,symmetricfunctionsnoncommutingvari:[297,115,140,27],dual_classical_weyl_to_affin:241,aababaabba:42,partitionsgreatestl:306,read04:285,clonableel:84,docttest:140,min_from_height:256,loss:130,to_word_by_row:[122,7,301],lost:276,is_acycl:[319,217],nonnesting_partition_lattic:143,necessari:[253,299,258,40,301,42,137,260,150,62,180,144,313,108,206,14,68,249,171,189],expnum:244,martin:[289,78,182,316,66,206,130],rota:283,principal_extens:[319,217],page:[268,5,7,80,309,88,16,90,253,286,0,64,266,311,276,42,261,283,122,129,52,212,304,306,217,310,62,144,68],four_n_minus_six:129,scaler:65,number_of_peak:[286,256],dual_design:137,st1986:163,alternating_sum_of_finer_composit:201,congressu:62,home:62,peter:[195,0,137,258,125,88],librari:[253,158,311,276,230,81,83,147,125,127,171,88,199],word_str:42,antichainposet:[189,163],"__contains__":[286,147],sidon:[],overlap:[276,300,211,272,42,312,5,22,190,34,129],tableaux_all_with_categori:[281,106,21],estim:[253,171],tamari_smal:285,symmetricfunctionalgebra_du:280,encourag:[257,286],journal:[268,5,7,165,82,88,260,128,251,286,0,256,307,21,186,195,42,261,115,285,287,172,50,129,212,305,92,144,222,68],is_factor:42,usag:[253,163,269,184,222],uncompactifi:90,right_permutohedron_interv:286,nutshel:285,offset:[301,0,56,306,7,293],"98b":0,kboundedquotientbas:77,"_next_stat":269,varepsilon:184,quarter:[212,56],rademach:253,testsuit:[4,6,7,10,11,13,14,227,22,23,24,29,32,39,49,50,61,92,73,76,77,83,84,89,281,286,174,103,104,105,194,109,114,117,163,189,132,140,142,143,147,148,155,45,243,167,170,178,180,181,48,322,185,188,191,197,201,317,204,205,206,287,220,221,44,229,232,233,234,235,236,237,238,239,240,214,249,269,252,255,258,259,21,275,85,280,285,303,290,291,293,295,298,301,304,33,306,308,309,310,313,126],rigged_partit:[220,168,76],abab:[311,42],s7r10:5,pplane:88,other_affin:[291,218],positiveintegersemigroup:147,glenn:129,symplect:[228,225,160],"0x7f2719212398":240,diagon:[211,212,256,160,180,283,306,7,61,122,218,147,222,128,224,35,69,52,269,291],cocod:286,cars_permut:128,fermoin:310,jarvi:160,contruct:[84,253],inner:[228,160,7,184,253,93,272,256,22,259,101,106,276,42,283,117,285,201,122,130,211,306,140,180,224,68,154],odiou:56,bruhat_graph:205,aabaa:42,north:[300,256,306,7,184,311,52],s0012:179,subsum:310,from_zero_on:306,ead:62,bn10:296,smallest_posit:151,neutral:[276,254,1],overflow:[253,257],highest:[],eat:163,abcacba:42,nr_filled_cel:0,maczx:92,displac:128,group_to_latinsquar:0,displai:[76,276,293,7,321,264,90,253,286,256,21,180,220,184,185,104,188,269,108,109,205,199,113,261,197,117,122,291,163,207,128,52,211,301,57,306,60,140,310,311,143,144,224,68],has_initial_st:184,rows_intersection_set:211,limit:[],indefinit:[122,69],vertex_relabelling_dict:288,lascoux2003:142,graded_poset:163,reciproc:[306,47],tensorproductofregularcrystalswithgener:21,evalu:[78,7,20,141,171,90,253,286,179,98,187,190,42,117,115,46,122,163,304,306,61,92,224,68],wedderburn:61,decreasing_cover_rel:185,faces_of_vector:93,twist:[88,142,259,218,82,167,11,32,13,35,241,89,291],erik:287,mauri:42,eric:[229,163],generator_nam:286,futur:[42,33,306,285,2,184,241,30,218,128,269],rememb:[222,146,160],bc4:[291,32],bc5:291,to_exp_dict:306,group_compon:[21,11],bc3:[167,89,32],stat:222,star:[0,140,61,272],bij_type_a2_even:[197,255],tpkrt:55,derub:178,lequal_matrix:[304,163],bc_:291,get_aord:289,coroot_lattic:[155,237,143,259,6,239,295],stai:256,from_fundament:241,muticharg:301,sphinx:[291,121],dihedralgroup:[247,253,141,0],mc1995:309,has_right_desc:[287,286],indirectli:[12,171,306,276],bcc:[5,312],preimag:[185,93,27],zorca:42,omega3:277,decemb:56,noncommutativesymmetricfunct:[305,140,61,201],normalize_hughes_plane_point:88,is_column_increas:7,weight_sequ:190,contained_in:0,inv_factori:289,"0x7f26efba1b90":204,fos2010:106,fredrik:[53,171],andri:[144,195],whose:[],accur:171,equigrad:78,follows_tableau_unsigned_standard:180,"4776v1":18,hemmeck:[316,78,182,289,66],swap:[75,301,42,257,285,164,288,317,293],bibd_5q_5_for_q_prime_pow:266,aux:185,usetikzlibrari:184,expand_as_sf:78,chennai:146,"void":146,"_represent":180,covert:169,"9407124v1":272,b_matrix:[35,319,217,120],lhs_gen:289,govern:265,has_bottom:[304,163],martinez08:178,bistochastic_as_sum_of_permut:286,infiniteword_cal:[311,231],upl:129,mols_14_4:268,finitewordpath_3d_it:311,herbert:56,vector:[],compositiontableaux_shap:166,affect:[21,141,260,243],abcabababacaacccbbcac:311,dm_56_8_1:268,pairwisecompatiblesubset:[111,158,163],mahir:286,affinepermutationtypec:287,affinepermutationtypeb:287,affinepermutationtypea:287,affinepermutationtypeg:287,to_class:143,lehigh:286,totient:56,dobinskisformula:171,even:[228,7,208,84,247,171,88,262,269,253,286,272,22,184,15,106,190,276,42,283,201,291,50,82,298,211,212,56,306,308,140,218,62,180,146,147,319],cjm1960v12:129,neg:[],hexacod:84,steiner:[],cheng:144,yonah:286,"new":[],net:[283,266,68],neu:305,crystaloflspath:[106,11],north_east_label:52,weingarten_funct:308,canonical_children:87,behavior:[143,150,313,184,147],b1xc1:160,ending_partit:306,never:[155,4,7,309,83,214,141,169,14,249,320,269,289,272,258,259,184,188,111,113,0,285,243,49,295,322,140,92,312,314],drew:143,q15:247,"__hash__":[30,171,12],propp1997:163,rctokrtbiject:292,paquin:307,bogdan:[218,142],abstractli:[6,7],interpret:[],lipkin:311,cloudread:171,f_vector:[24,163],manipu:253,sbornik:160,loos:[291,269],galoi:[312,65],partitionspeciesstructur:318,permit:[22,253,6,21],tip3:185,tip4:185,sym5rul:160,schur:[],yamada:106,homemad:160,moral:127,vacancy_num:168,is_grad:[304,163],a000153:56,label_color:143,abbccccabca:5,linear_combin:141,is_simpl:[137,311],has_coerce_map_from:[237,239],n_core:306,bjoerner:285,finite_word:[311,231,42],crystalofspinsplu:50,b_59_57:88,typo:[268,229,7,56],recommend:[276,306,61,242,243,269],s61vortrag:128,restrict_partition_length:68,type:[],c_matrix:319,allouch:5,reusabl:[5,40],schroeder:56,qdm:[57,144],s_gap:171,warn:[276,289,304,56,137,217,184,143,221,243,35,319,269],"_2_":285,"__iter__":[171,313,147],multiplicative_gener:306,regular_til:311,kumar:[52,142],room:[306,269],classicalexcept:35,lw2:42,"0x7f271921d410":238,lw1:42,upper_contains_interv:185,worth:[140,269,160],oleg:61,killpatrick:256,reflect_step:11,hansen:[229,7,321,242,269,286,256,22,15,186,205,114,122,130,301,211,212,138,306,74,63,68,151],endow:[160,277,272,78,143,259,6,48,140,165,221,291,147,283,127,286,16],undirect:[30,35,285,217],affine_symmetric_group_act:99,give:[228,229,262,77,160,5,293,7,80,241,295,150,184,0,170,14,310,249,171,173,180,253,286,265,272,179,260,22,259,99,48,220,101,186,106,268,269,176,256,190,205,35,111,276,195,280,164,285,201,122,317,291,163,128,129,130,132,298,258,211,212,301,303,137,287,70,307,140,218,142,92,143,144,311,147,223,68,69,306,153],relations_numb:163,generator_cmp:141,patternavoid:286,fsmoldcodetransducercartesianproduct:184,hline:0,cartan:[],delahay:129,stanton:[172,286,7],unsign:[],hyperoctahedr:[286,308],jolivet:[5,93],tbar:142,test_dual:[306,211],mcneil:163,confin:253,answer:[37,253,56,22,57,293,80,120,82,137,144,298,65,143,217,208,130],bh2013:92,updat:[175,56,7,208,62,30,168,109,130,269,17],iv53:130,orderedsetpartit:[138,229,201,253,242],a001358:56,is_lattic:185,prefixes_iter:312,xor_transit:184,from_expr:[117,122],attempt:[253,42,298,22,184,104,293,269],third:[160,319,0,56,22,306,6,101,266,184,247,68,307,43],is_overlap:[211,42],think:[256,160,143,306,7,127],bottom_schur_funct:258,maintain:22,duality_pair:[165,272,115,201,27,140,297],antichain:[304,189,163],combine_al:184,graph_gener:62,deck:253,partitionalgebraelement_pk:169,transversaldesign:144,diagonal_composit:128,privileg:313,all_children:87,schillingtingley2011:21,d2xd2:160,"__class__":[114,229,302,56,22,98,48,185,30,163,285,130],better:[253,286,269,276,291,29,141,225,205,171,68,306,173,132],algebras_with_basi:141,upper_hook_length:306,schmidt:286,extended_affine_weyl_group:241,forward_circul:0,cyclicsievingcheck:172,database_gap:[317,56],promis:195,tableaux:[],weyl_charact:228,finitewordpath_dyck_cal:311,plot_origin:5,on_int:163,kirillov:[],tableautuples_level_s:301,grammar:253,postnikov:[143,132],sigma_2:56,sigma_1:56,reutenau:[272,42,305,115,92,198,68,260],dukesling14:[195,251],exp_low:[306,293],luca:[42,56,312,65,108,171],compositiontableaux_al:166,order_of_general_linear_group:222,dual_type_cospac:143,side:[195,82,170,286,272,143,259,190,205,35,276,277,42,285,201,165,241,52,189,287,59,140],briand:[306,68],mean:[228,229,78,7,80,241,0,87,260,171,253,286,272,256,180,23,160,48,266,184,185,30,186,283,190,313,35,37,40,148,280,261,116,164,278,285,201,165,122,317,291,163,49,128,131,211,137,306,59,140,61,311,258,144,146,66,68],a006125:230,"24a":80,symmetri:[228,276,208,212,42,160,100,306,253,7,286,61,241,68,285],pathlist:[113,55,255,181,197,103,104,105,85,10,292,109,153],maximal_cyclic_decomposit:287,nrtupl:171,sub_fsm:184,preprogram:160,extract:[205,183,298,253],"0x7f8fbe3235f0":[],unbound:20,is2:137,is1:137,sstposet:189,content:[],rewrit:[137,88,260,184,241],fogg:[42,307],reader:[283,165,291],positions_of_unmatched_minu:21,shorcut:93,finitewordpath_north_east_iter_with_cach:311,blair:171,linear:[],wherea:[301,277,229,256,42,78,180,243,285,218,185,186,11,169,295,128,88,260,171,90,132],situat:[253,301,61,163],infin:[76,5,7,141,10,171,269,253,254,21,22,26,102,30,231,108,192,114,176,42,285,122,289,317,291,296,130,299,211,306,59,217,311,312,144,221,307,147,319,220],parenthesi:[7,256],ncpu:37,skewtableau_class:122,infix:[285,272],standardribbonshapedtableaux:224,is_lequ:[304,163],zs2:61,cdefab:231,ive2012:7,qdm_21_5_1_1_1:268,ist:209,loui:[286,285],iso:[193,217],isn:[68,260],dimv:115,radical_difference_set:247,stewart:65,to_translation_right:241,a3r:167,compact_high:[306,293],three_n_minus_four:129,grade:[77,293,269,286,272,258,101,21,276,114,283,115,201,163,49,297,130,298,301,304,306,140,92,68],tachyon:40,dig6:[35,217,120],dynkin:[],thereof:[143,20,291,163,82,269],"06a":80,hook:[],unlik:[276,286,298,117,48,125,171,295],aperiod:[184,42],agre:[7,171,281,296,272,256,180,99,184,106,35,277,42,283,122,291,56,306,140,218,220,68,69],nonreduc:291,orthotriangular:188,wherev:[22,212],dedekind:163,"4562v1":310,sometim:[286,88,0,129,56,5,58,26,81,130,137,144,229,184,171,68,151,16,269,266],isconnectedblockdesign:137,melancon:42,apply_simple_project:241,namespac:[],lower:[229,7,11,14,269,17,29,286,0,307,184,185,173,176,195,108,42,122,163,132,54,211,287,306],theberenstein:23,gyw:108,h_two_step_piec:52,somewhat:[190,57,276,184,78],finitelygeneratedmatrixgroup_gap:205,standard_bracket:98,oa_7_18:268,keyword:[75,160,7,166,141,260,253,286,256,258,35,283,285,288,122,163,130,211,301,56,304,306,140,68,69],princeton:[58,81],"__custom_nam":141,dominant_root:207,matter:[137,283,48,205,260,43],solomon:[305,272],lower_hook_length:306,singletonspecies_class:72,simple_reflect:[228,277,237,143,99,6,239,218,241,205,170,250,286,199],kazhdan:[],purkayastha:171,mind:[253,285,218,163],mine:253,binarytrees_al:285,seed:[276,217,218,82,147,319],"_to_cycles_orig":286,gutschwag:68,seen:[185,276,300,272,261,57,253,285,140,61,62,198,218,163,247,35,260,189],seem:[253,286,42,56,306,140,184,62,146,163,260],seek:253,minu:[298,286,256,180,306,7,184,82,311,106,225,163,50,68,132],last_position_dict:42,chem:33,strongt:180,en_u:175,lmbda:[137,57,247,88,131],edge_dict:288,kronecker_coproduct:[68,272],desubstitut:42,hkw2015:184,data1:163,data2:163,plot_reflection_hyperplan:[143,276],blue:[276,93,40,311,256,143,306,184,185,198,291,223,127,129,52],aabcd:229,boltzmann:223,regular:[256,276,212,42,78,143,307,21,168,222,247,260,90],os64:195,finitewordpath_triangle_grid_list:311,typ:287,irr_repr:228,maria:[286,285],picklingerror:[231,147],doi:[229,268,179,260,70,163,80,184,283,106,222,68,209,199,115,43],don:[229,214,167,89,173,286,272,307,144,185,266,34,195,280,261,163,130,131,211,74,61,142,220,68],ccrwest:[173,17],dom:46,"_stream":289,doc:[160,228,277,56,5,74,311,266,163,171,151,130],dog:299,doe:[],digress:253,parentmethod:[228,277,297,241,272,77,276,143,305,140,218,142,234,141,225,201,259,298,68,240],planaralgebra:186,signedcomposit:[126,158],dov:185,dot:[5,93,163],introspect:253,issimpleblockdesign:137,polyhedralr:[157,26],pavag:311,speedup:[7,132],syntax:[253,286,265,276,137,305,115,285,140,184,165,30,283,163,68],kerber:[306,61],rees00:195,sum_of_partit:[297,115,27],finitewordpath_square_grid_cal:311,from_virtu:[76,264,310],root_lattice_r:[143,234,240,218,276],bourbaki:[235,236,6,119,241,291,35],"5078v2":65,explain:[277,253,276,268,272,160,165,184,80,185,144,163,247,251,132],sugar:[305,285,84],"__call__":[155,4,5,309,83,214,141,169,14,249,269,265,272,258,259,184,188,243,49,295,322,140,92,314],"_vector_":141,apply_multilinear_morph:[272,283,115,140,27,165],subset_rest:111,stop:[150,40,42,261,184,311,171,68,262,269],combinatorialel:[12,286,178,282,256,22,99,293,306,166,21,108,222,211,171,117,301],next:[276,59,76,160,5,165,82,84,229,11,269,169,0,171,88,90,185,93,289,181,255,256,257,22,78,100,184,102,103,104,105,218,109,190,113,85,40,42,253,197,117,285,286,21,203,9,128,209,130,133,56,306,74,308,217,61,142,311,180,144,307,147,317,312,319,154],wojta:195,b_0_1:88,hspin:[283,68,4],bar:[149,163,201,142],sacrific:257,is_lorentzian:69,lex_great:312,reload:[231,20],bad:[62,57,286,253,163],bab:[5,59,42],bac:312,baa:[5,59],bam:306,julien:[5,42],datatyp:[],a001836:56,"_mutation_typ":[319,217],ybar:253,is_rank:[304,163],subject:[296,211,256,180,306,7,309,84,111,269],coxet:[],said:[229,7,80,13,87,171,286,272,307,22,48,320,277,42,278,317,298,211,137,58,140,62,144,222,290,68,306],complete_return_word:42,scrap:276,baxterpermutations_s:18,hadasloa:81,simplest:[22,184,163],colored_label:143,attribut:[275,253,150,269,304,125,165,184,310,311,84,187,173,147,163,190,295,231,130,153],tableau_of_word:287,conjectur:[286,77,42,164,306,7,61,310,92,81,283,11,171,128,205,35,319,260,52,225],intersection_at_level_1:276,lazi:[],functool:7,last_letter_lequ:7,j_0:47,"9809122v3":4,against:[310,69,218,293],by_word:[122,7],uni:[289,78,305,182,309,66,316,68],unk:289,t0_check_on_basi:[218,142],left_right_symmetri:[185,30,285,256],foobar:201,increasingarrai:229,to_binary_tre:[47,285,256],quivermutationtype_abstract:35,emptywordlatex:184,tinv:142,mathieu:256,"_to_":83,three:[228,229,268,5,164,0,50,251,253,93,272,256,307,180,266,190,276,195,40,42,285,286,163,128,129,52,211,301,56,305,306,218,142,311,144,147,66,68],oooooo:149,"carr\u00e9":42,trigger:[278,251,61],interest:[228,286,158,42,261,5,253,285,165,184,142,269,190,128,189],basic:[],dilworth:163,disjointset:42,c2xc1:160,deeper:269,suppress:[302,184],"___o___":285,mcd:[92,283,286,68,308],skandera:286,mutation_sequ:[319,217],combstruct:253,breadth_first_search_iter:147,coproduct_on_basi:[116,14,115,272,27],are_incompar:304,setpartitions_setn:229,is_highest_weight:[106,11,112],proccrac:75,servic:125,scalar_jack:[68,309],calcul:[228,77,4,82,83,168,281,0,256,22,184,21,106,188,199,276,42,253,117,201,317,128,56,306,218,142,92,180,220,65,222,68],neat:291,promotion_invers:[265,106,7,21],anchor:184,c21paper:276,slc:128,cang:212,seven:160,wouhou:137,kwarg:[298,289,99,60,184,306,130,154],shuffleproduct:[148,136],submatric:69,act_on_affine_weyl:313,disappear:[253,171,286,269],word_infinite_datatyp:[311,231,36],number_of_fixed_point:[286,256],product_on_basi:[228,272,305,115,140,61,193,186,27,297,16],receiv:[137,253,153],make:[214,276,77,78,259,293,7,165,241,84,168,11,169,88,90,266,253,286,272,217,22,98,160,48,220,101,185,21,183,187,269,34,35,277,113,195,184,40,42,283,299,222,285,201,122,290,291,163,128,189,301,298,54,212,302,56,137,305,306,140,61,142,311,143,144,141,146,147,66,68,69,243],vaintrob:61,cover_relations_iter:[304,163],mr1410617:0,rhombuspiec:52,welker:[286,61],is_binari:137,abcdcbaxyzzyx:42,nakajimaymonomi:221,kim:[221,108],generali:276,"4652v2":306,from_hexacod:[84,48],number_of_factor:[90,42,307],rigged_configur:[281,55,76,113,197,85,181,220,264,310,103,104,105,168,10,292,109,207,153,255],epistandard:307,finitewordpath_dyck:311,rigging_list:[220,168,76,310],inherit:[181,165,84,141,225,171,286,265,255,48,184,103,30,109,35,85,197,283,201,317,163,272,211,212,305,311,147,151],qualit:222,xyy2:48,weakli:[258,211,256,77,22,260,306,7,310,166,30,225,163,14,68,249,272],arrangements_setk:286,rigconbiject:[281,220,55,310],abbbbbbbbbb:42,left:[12,229,5,162,7,165,241,214,141,218,247,170,16,269,281,286,272,256,21,22,99,184,18,30,186,108,190,205,276,195,42,283,285,201,185,122,293,166,130,189,301,298,55,211,212,0,305,58,140,61,248,311,180,220,315,287,223,68,82,306,153,71],from_chain:7,number_of_partit:[171,209,306],just:[78,48,6,7,82,141,11,171,150,16,173,185,286,296,20,42,256,21,0,182,184,29,30,186,218,176,191,35,276,280,253,283,285,287,122,317,291,163,127,295,208,272,211,301,304,57,306,322,140,61,142,312,144,146,66,68,313,243,154],"__dict__":269,yet:[74,160,243,141,13,269,253,303,143,184,29,35,111,291,163,211,306,59,217,218,311,319],languag:[253,163,184,42,56],a0000000000:84,partition_algebra:169,borger:260,frosini:42,character:[253,42,84,283,160,48,62,30,188,108,127,68],rampon:163,stanley_symmetric_funct:[225,77],denomin:[228,253,56,309,92,319],coeff_sp:[162,140],rctokrtbijectiontyp:[197,10,109],use_vector_not:207,circular_dist:180,labelled_dyck_word:128,finitewordpath_3d_cal:311,change_r:5,algorithmica:90,applic:[12,5,7,81,20,247,88,253,93,272,256,307,99,184,108,205,195,41,42,66,286,288,56,306,140,218,311,147,222],legend_color:276,ulcigrai:42,a001333:56,a120588:253,background:[306,164,165,218,35,189],elabor:127,ye1:218,ye2:218,symmetricfunctionalgebra:68,transvers:[144,88,195],gradedmoduleswithinternalproduct:201,manual:[298,5,283,137,184,30,61,163,190,319],archief:56,max_obstruction_s:37,"_ending_posit":12,dutour:256,www:[228,268,78,5,162,7,171,262,173,43,286,289,178,272,256,307,160,182,185,266,17,195,42,285,46,163,128,212,56,137,305,306,61,311,66,316],is_grassmannian:241,deal:[74,285,269,184],interv:[],somehow:208,dead:[253,269,33],intern:[],finitesetmap:158,ymin:311,"_to_cycles_set":286,degree_on_basi:[298,68,16,77,201],generic_basis_cod:201,duality_pairing_by_coercion:201,aaaaaa:[42,307],fill_hol:144,okado:[281,70,310,106,207,153],universal_extens:319,standardpermutations_avoiding_12:286,pgpointflatblockdesign:88,uncompress:125,finitewordpath_2d_it:311,ncsymbas:297,use_product:106,promot:[265,287,7,21,198,106,163],"0pt":93,is_bitrad:0,partitions_n_with_categori:[253,171],"super":[298,277,68,272,77,143,305,140,265,302,297,269],bbcac:42,babaabbaba:42,algebra_gener:[16,61,140],kerov:310,is_orthogonal_arrai:[57,144,268,195,251],a005100:56,a005101:56,commit:222,to_word_by_column:[122,7,301],zun:56,nrows_per_piec:40,lieb:186,yudovina:61,subr:[298,277,272,143,283,165],salisburi:[254,7,264,21,221,10,108,296],liee:185,macmahon:[178,165],kirkman_triple_system:[80,17],decomposition_revers:256,hensel:61,down:[276,286,256,280,160,143,306,171,7,29,293,108,163,223,128,52,269,301],latex_empty_str:286,formerli:229,precomput:260,partitionalgebra_sk:169,manfr:305,fraction_field_el:319,ibiblio:56,editor:283,fraction:[83,115,256,77,56,283,4,285,309,218,319,92,312,253,307,66,128,68,295],analysi:[253,68,16,261],lower_contained_interv:185,forc:[289,306,20,141,163,13],labelled_tre:[30,48,285,84],from_sag:217,sagan:[75,115,7],berg:[272,201,140,77,166],supersolv:29,finitewordpath_al:[5,311],order_ideals_lattic:163,descents_composition_last:286,word_it:231,haz2004:272,max_slop:[22,253,306,269,154],empt:1,"_root_lattic":132,restrictedintegerpartit:189,unrel:[301,272,163],set_part:229,classif:[35,300,256,160],featur:[],shin:[128,221,108],classic:[],petit:150,is_new:[185,285],diagnost:132,hecke_paramet:82,"2460v2":286,reading_word:12,youngrepresentation_gener:75,evaluation_spars:42,bjl99:[247,278,80,208],surpris:[143,163],exced:[68,272],handel:184,beezer:163,excel:[276,186,283],hh12:129,"0x7f26f7ddff50":73,dlxcpp:216,t_k:[19,169],subdivid:[302,256],a020639:56,"5796v1":128,compare_el:163,intervals_iter:163,symmetrized_matrix:69,has_top:[304,163],lspath:[275,123,143,221,310,263,106,11,108,191,132],furthermor:[280,258,23,260,285,322,184,190,247,49,144,141,147,57,13,14,68,249,269],pseudo:[41,42,132],fsm:184,oa_8_69:268,type_du:[13,295],gforg:253,hungarica:184,ignor:[253,268,302,180,306,59,285,217,184,30,122,231,315,163,149,127,319,130],shallowli:[12,171],vershik:[286,306,61],milp:163,projected_path:311,untwist:[],invent:[199,142],coxetergroup:[170,199,250,121,82],mild:209,customari:[277,184],group_exp:241,mill:212,a004086:56,"311a33":286,depend:[4,293,7,166,83,84,141,11,87,171,269,253,286,272,231,30,106,218,283,193,276,42,164,285,319,163,82,52,132,300,211,56,137,70,322,140,61,92,144,221,68,306,243,225],rho_class:277,is_suit:40,intermedi:[253,160,180,199,184,208,106,190],is_ful:[285,42],binary_invert:184,abelian_complex:42,ukkonen:90,a2p5:[19,169],specht:[306,75,301,293],skewtableaux:[224,122],from_list:303,cyclic_sieving_phenomenon:172,abbaba:[311,42],string:[228,229,75,160,5,163,7,282,321,166,83,84,11,247,171,150,90,93,296,178,280,256,104,180,23,220,27,130,30,183,269,108,272,35,276,195,184,40,176,42,283,117,115,285,286,21,122,291,125,20,12,52,132,319,211,301,0,137,57,306,60,217,61,101,311,312,144,231,313,33,224,293,68,151],type_bc_affin:32,asymptot:[253,184,42],number_of_parking_funct:256,worddatatype_iter_with_cach:[311,231,36],previl:164,genericgraph:[217,163],a006882:56,dim:[276,168,310],dii:119,subhypergraph_search:[137,146],did:[280,56,22,21,291,32,163,128,269],productspeciesstructur:71,dig:163,iter:[],dic:106,is_a:[128,2,256],item:[276,54,311,257,7,201,102,29,288,141,207,52],row_annihil:291,to_binary_tree_right_branch:30,s_adic:307,round:[298,171],fundamentalgroupel:313,factorized_permut:180,base_cas:266,projecteuclid:[262,306],homogeneous_basis_noncommutative_variables_zero_heck:298,oneexactcov:[133,216],shareshian:[68,272],schilling08:106,"_hasse_diagram":304,compute_coeffici:289,new_transit:184,taocp:257,twisted_demazure_lusztig_oper:[218,142],bk09:293,dieck:228,componentwis:[256,189,282],slot:108,good_suffix_t:42,demazure_lusztig_operator_on_basi:142,emptytableau:180,french:[211,76,180,117,7,321,310,21,122,264,293,224,306,301],tangent:42,dewar:[41,78],e_7:291,set_root_label:84,khalllittlewoodp:[283,77],implicitsuffixtre:[90,42],wait:[190,276,184],box:[12,76,7,166,281,296,143,99,264,106,108,276,40,117,262,301,56,58,310,180,220,306],extrep:[88,125],canadian:88,shift:[228,84,14,260,93,254,42,258,249,184,187,34,276,0,285,286,130,33,218,144,224,68],extendedaffineweylgroupw0p:241,cartantype_affin:[13,167,89,291,218],boi:56,difference_famili:[247,266,208,268,17],boo:125,aphabet:59,extrem:[22,141,285,307,56],transversal_design:[137,57,278,80,144,17],quasischurbook:272,garnir_tableau:[306,293],imbal:[42,56],outer_s:122,dlxcpp_find_complet:0,top_left_empty_cel:0,ceccherini:286,right_action_product:[257,286,61],normalise_hadamard:81,karpelevich:[296,108],planch:[235,236],integer_matric:[262,315],wealth:125,baer:[137,195,268],sake:163,univers:[5,293,7,80,81,241,83,247,170,253,286,256,307,101,29,205,42,283,285,319,122,163,207,128,300,137,308,309,92,144,313,68],visit:[184,90],perm:[72,91,54,246,137,117,284,7,286,61,185,318,159,149,107,273,71],reshetkihn:281,puzzle_piec:52,lotharingien:256,prolong:[5,42,307],to_labelling_area_sequence_pair:128,a003418:56,"_min":66,diagonaliz:65,idempot:[195,42,305,140,61,144],format_label:184,bbaba:5,latex_relabel:291,rigid:16,bruhat_invers:286,shape_composit:166,to_self_1:20,to_self_2:20,idempon:305,fly:303,coalit:37,tokyo:4,graded_compon:114,immacul:[162,140,272],uniqu:[228,268,12,5,48,7,277,241,141,11,172,247,14,88,249,171,266,281,254,280,21,22,259,260,100,26,27,185,30,186,106,190,35,276,195,184,40,42,253,283,117,287,296,203,291,163,49,127,258,211,301,56,304,57,70,59,140,218,101,143,144,313,307,0,68,225],to_path_str:256,points_pc:253,claim:[306,286,285,272,218],edgeseq:117,def_rep:75,predict:[253,283],from_weight:101,"14d":80,bipartit:[253,137,217,143,291,163,319,130],baxter_permut:18,choose_nk:63,loop_typ:308,pink:40,"0x7f2719229de8":235,is_selfdu:[300,189],identity_matrix:75,tilt:[35,256],staffpriv:305,"_max_part":269,randomgnp:62,foreach:108,pure:[253,42,4,80,241,65,205,16],tile:[],tild:291,return_paramet:[137,266,88,80,125],"5579v6":306,map:[],mar:140,mat:[272,160],max:[72,12,7,166,246,91,286,289,1,104,273,0,196,284,285,122,159,206,294,107,54,56,146,66,318,68,71],maa:130,helmut:184,mac:[92,148,68,283],snu:46,internal_coproduct_by_coercion:297,nonattackingbacktrack:12,setpartitionsskhalf_k:169,mai:[228,229,47,160,5,6,7,80,81,241,84,141,184,306,0,171,88,269,266,253,286,254,178,280,256,307,22,23,99,48,2,101,21,186,187,189,108,283,190,205,301,37,276,195,176,42,261,198,199,278,165,296,291,163,127,128,129,131,272,298,277,211,212,137,33,58,59,61,311,143,144,221,146,147,222,218,312,69,70,243,225],underscor:[260,176],maj:12,grow:[253,276,5,285,311,108],relations_iter:163,print_opt:[214,141,140,241],rangl:277,skewpartitions_n:211,"6th":128,color_increas:185,extendedaffineweylgroupfwel:241,pcheck:82,to_binary_tree_left_branch:30,"switch":[286,7,306,48,102,185,122,292,13,269],xyxsxss:5,talk:[128,42],is_ellipt:35,lsa:46,cur_path:[113,85,255,181,197,103,104,105,109],graduat:203,lst:[287,115,285,2,128,171],finitewordpath_hexagonal_grid_callable_with_cach:311,equip:[253,6,285,293,163],peterson:101,nombr:185,pointer:[253,276,257],lattice_basi:241,group:[],thank:[253,195,256,218,163,88,132],combinatse9:289,maia:78,lmvw13:[140,272],main:[12,158,160,80,208,270,86,171,269,253,286,256,184,21,251,205,35,276,277,261,278,125,128,129,211,306,66],principal_order_id:[304,163],bousquet:164,dmtc:[11,41],"_test_root_lattice_r":6,initi:[],orderedpartit:306,weaktableaux_cor:180,xtreeprocessor:125,larger_lex:306,arrows:[311,276],kboundedsubspac:[283,298],cassaign:[5,42,307],massachusett:42,crystalofspin:[50,290],x11:27,misbehav:34,attributeerror:253,cyc_act:172,secondtab:7,hsp3:4,refrenc:[117,309],comultipl:[272,116,283,61,14,68,260],gessel:[68,165,272],continu:[281,277,272,42,56,5,306,253,142,312,307,147,293,262],redistribut:129,cfz1:143,coprim:164,heap_insert:285,fosta1994:225,girl:56,emptylett:290,tmp1:146,frobenius_rank:[306,211],baselin:108,reportlab:125,artifici:[190,257],number_of_double_ris:256,"3rd":[84,128,65],affinizi:9,correct:[229,77,236,243,7,80,84,225,247,88,281,286,272,256,184,15,30,266,205,35,276,195,115,261,278,285,119,122,292,163,130,131,301,56,137,253,218,310,144,153],"0x7f8fd3ac7ed8":[],earlier:163,standardbracketedlyndonword:98,orv:306,runtimeerror:[289,42,80,184,144,125],orr:[218,241],alpha_:[143,155,276],brzozowski:184,california:[207,101],to_descent_algebra:140,org:[228,229,268,160,5,163,7,80,279,171,88,173,43,286,129,178,0,256,307,184,187,176,17,195,42,115,285,119,46,289,291,125,262,177,211,56,137,138,306,217,310,311,63,147,68,69,153],finitewordpath_cube_grid_cal:311,frequenc:222,gdual:106,alphac:143,set_ascii_art:256,jackp:[68,309],principl:[253,7,218,291,127,269],oa_15_112:[144,268],frequent:[301,184,17],first:[],reimplement:306,kernel:306,carri:[6,48,184,214,297,90],"_dual_class":163,bbabaa:42,cric:311,to_y_monomi:221,"long":[268,160,5,6,7,82,83,168,10,11,310,260,251,174,281,296,272,293,217,22,23,4,220,101,21,266,106,188,218,108,205,35,276,195,40,280,261,285,201,307,317,163,207,129,209,130,189,132,311,319,208,301,56,306,253,60,140,61,142,92,143,144,221,65,147,68,309],oppos:[281,285],bayreuth:68,zs1:209,workaround:[170,299,298,276],zs3:[214,61],bcacb:42,joinsemilatticeel:[29,39],fastcryst:23,unknownseriesord:316,lar:0,proposit:[298,277,201,101,80,92,140,218,68],nondecreasingparkingfunct:[128,2,256],memo:184,positive_roots_nonparabolic_sum:143,to_lehmer_cod:[287,286,314],join_matrix:[29,304,163],clustervari:319,s0195669880800199:195,as_dual_of:6,were:[40,212,264,58,218,140,184,142,272,30,141,306,173,108,293,268,208,70,90,225],partition_tupl:293,proofread:[86,270,158],standardpermutations_avoiding_231:286,abaabababbbbbb:42,ideal_diagram:186,fabio:286,apostolico:42,ababbaa:90,to_321_avoiding_permut:256,scalar_jack_basi:309,portrait:286,a064553:56,plot_opt:276,bbaaaa:42,esop:42,squar:[],klebertreetypea2even:207,cohighest_root:143,expnums2:244,sqrt3:311,delta_inv:42,interior:[306,272],schocker2004:305,b_70_59:88,parkingfunct:128,incoher:[22,84,253],pain:272,trace:[75,137,199,7,311,146],normal:[29,88,241,304,276,143,306,309,48,201,218,82,92,30,188,163,258,83,68],track:[195,289,301,184],combinations_msetk:15,incidencestructurefrommatrix:137,beta:[312,0,42,307,5,306,241,22,143,223],pair:[228,229,268,160,6,7,165,180,21,141,11,169,247,171,88,262,90,281,286,47,272,251,217,22,303,48,266,27,102,29,30,186,106,189,108,256,190,205,35,301,277,276,195,184,40,42,261,319,117,278,285,201,185,288,122,163,206,207,128,129,12,52,131,132,300,211,212,0,137,57,306,253,308,140,61,248,143,144,297,147,222,18,153,115],beth:[247,80,310],bz05:[115,27],td_product:144,sutton:171,synonym:[228,272,280,258,306,122,49,14,68,249],trotter:163,typeset:184,monoid:[286,272,42,312,283,306,7,140,61,21,186,141,147,34,231],crystal_of_letters_type_g_el:290,partitionalgebraelement_tk:169,lenni:162,sigma:[12,93,265,42,56,5,307,106,291,68],gracefulli:22,krrctypea2dualel:[220,310],shot:256,rhs_gen:289,festschrift:163,show:[228,160,5,7,165,184,171,88,90,253,286,112,272,256,22,101,185,190,35,276,195,40,42,285,122,290,163,130,298,319,211,302,217,218,311,143,221,68,225],gap_packag:[137,88,17],tableautuples_level:301,kr_type_dn_twistedel:106,kks3:298,threshold:190,corner:[253,286,229,211,212,256,276,99,7,306,122,317,291,293,171,52],codomain:[93,272,5,283,59,140,61,165,201],lookuperror:184,abcdefghiklm:278,weaktableaux:180,behind:[235,236,306],crystalofspinsminu:50,parametr:[228,296,48],search_forest_iter:147,dict:[228,93,141,40,304,42,303,5,307,286,120,311,137,221,184,163,312],difference_matrix_product:131,jp02:307,partitions_all_with_categori:293,fascicul:102,startswith:[184,56],geq:171,nearli:[253,257,160],variou:[228,6,7,20,260,93,180,184,29,30,186,106,275,276,283,285,286,120,291,163,52,211,301,306,74,217,218,142,231,146,319],get:[160,5,0,7,165,82,150,168,184,247,171,310,243,269,43,281,286,296,42,293,307,22,24,101,102,185,30,121,272,276,277,280,261,283,115,285,122,317,291,163,127,295,208,132,298,311,56,287,306,322,140,218,142,92,198,222,68,69,153,225],binary_recurrence_sequ:65,repr:[276,76,180,117,7,198,264,310,306,122,224,24,301],secondari:128,"365x":[268,80],abbaabababbaababbaabbaababbaabababbaabba:307,gen:[4,82,83,141,247,88,16,43,289,272,179,0,71,182,310,205,115,280,196,283,117,66,285,46,288,163,128,298,256,56,306,74,322,309,218,142,92,222,68,154],r10l:[285,256],is_skew_symmetr:35,test_l:140,wordoftupl:184,factor_iter:[90,42],yield:[78,6,7,241,84,247,171,260,251,253,286,289,256,307,22,182,198,21,106,269,205,275,195,41,283,115,285,299,122,291,271,133,211,306,61,311,143,144,319,154],spinsplu:[50,263],arn2002:42,stupid:283,"1133a1":42,is_meet_semilattic:[304,163],fqt:[165,272],summari:[],wiki:[311,276,171,63,307],subcatalog:263,uncopyright:178,monomial_coeffici:[165,140,201,141,68,260],l_action:285,assumpt:[68,40,21,22,82,84,290,223,111,69,251],a000035:56,a000032:56,a000030:56,jackb:309,pytheasfogg:307,wonder:253,infinit:[],dejean:42,maltei:253,checkm:218,foreword:283,latin_square_product:261,enumer:[],label:[72,44,73,78,45,235,236,237,238,239,240,84,167,246,294,13,14,227,89,128,90,252,91,253,286,280,256,307,143,249,24,48,220,184,185,30,186,106,269,32,190,35,301,273,194,276,41,42,117,284,285,119,120,319,288,300,204,159,163,49,207,107,52,189,132,258,291,234,302,56,137,306,308,217,310,180,198,313,66,149,224,318,68,322,71],laz:191,tex_from_skew_arrai:321,permutations_nk:286,"78c":80,geometria:0,across:[155,301,256,143,7,61,241],edita:42,august:304,parent:[4,7,10,11,14,50,43,265,22,23,24,26,27,29,30,33,39,42,49,107,36,55,56,58,59,61,92,231,66,68,69,71,72,74,75,76,77,78,83,84,91,281,286,282,98,99,101,18,106,108,114,115,117,122,159,163,130,132,140,142,143,198,147,149,151,155,160,161,243,166,141,169,171,178,180,48,185,186,188,190,205,196,199,201,203,191,9,207,12,211,212,214,287,218,220,221,222,223,224,225,228,229,322,241,242,246,249,269,254,272,256,307,258,259,264,21,273,280,283,284,285,303,112,290,291,293,294,295,296,298,301,305,306,308,309,310,311,312,313,314,315,317,318,319],tup:163,utu:266,chamger:143,fauser:160,meerten:56,integervectorsiter:282,decreasing_run:[286,300],residues_of_entri:180,qdm_from_vmt:144,dedicata:0,monomial_crystalsnakajimaymonomi:221,reshetkhin:[281,21],affine_factor:112,improv:[175,276,59,280,42,5,74,184,208,163,190,207,171,68,151,243,269,132],is_final_interv:185,k_charge_i:180,k_charge_j:180,among:[253,286,129,268,256,56,22,306,222,163,82,84,176,66,88],acceler:42,indexedgener:141,gqleft:287,cyclic_shift:268,qs3:[141,61],qs2:[141,61],qs1:61,qs0:61,qs5:61,qs4:61,cancel:[21,280,108],prasad:[222,282,43],ultim:[269,42],camembert:163,cqf:128,mark:[],kboundedsubspacebas:298,babab:5,setpartitionstk_k:169,certifi:[106,217,66],variable_typ:319,incidence_graph:137,qsn:61,bmu:92,attacking_pair:[306,7],lectur:[228,42],those:[312,268,77,160,243,7,277,20,141,218,13,310,253,286,272,257,143,184,52,121,111,276,195,40,0,282,115,46,136,291,163,127,130,131,132,212,56,306,140,61,142,62,180,144,146,222,319,225],sound:130,steiner_triple_system:[137,57,266,17],kappa:[272,61],graphpaths_al:200,plot_fundamental_weight:[143,276],invok:[143,228,306,184],novelli:[285,7,27],margin:[],planar:[253,286,19,285,163,48,185,30,186,169],add_col:144,advantag:[228,296,42,253,165,21,68],to_vector:141,catabolism_projector:7,marcel:[286,160],abstractlabelledtre:84,zonal:[283,68,308,309],par:[201,222],"_test_prod":[83,4,258,322,309,92,188,49,14,249],is_fsmprocessiter:184,fagnot:42,same:[],pad:[276,256,306,140,184,68],pai:269,pak:[7,256],pal:42,linear_morph:[165,272],exhaust:[206,247,253],epsilon_ik:61,andhonk97:266,companion:88,capabl:253,jeffrei:[5,144,268,195,261],mani:[78,5,293,7,165,217,84,141,184,13,171,320,269,253,265,272,256,160,100,101,15,185,186,106,108,190,35,276,176,42,283,115,122,163,301,212,56,137,306,322,140,218,311,146,65,222,68],north_west_label_of_kink:52,appropri:[6,7,82,167,141,218,13,171,310,89,253,259,186,276,277,290,291,293,127,295,241,301,302,61,142,198],choos:[253,178,256,276,5,48,291,7,186,61,142,84,167,141,290,184,287,88,269,43],pioupiou:150,recursionrul:190,markup:291,seriesorderel:316,multicolumn:321,level_set:163,improp:[0,269],roughli:[253,269,222],spin_crystal_type_d_el:50,embed_at_level:[277,218,142],polygen:163,format_letter_neg:184,subblock:190,aspect:[276,287],vectorpartit:282,to_fundamental_group:241,finiteword_tupl:231,catabolism_sequ:7,a055790:56,demazure_lusztig_operators_on_class:[218,142],dipper:[301,293],pile:285,is_row_strict:[306,7,301],"0601693v3":12,iter_transit:184,garsia:[92,305,128,68,286],to_labelled_dyck_word:128,a000204:56,functorial_composition_speci:294,number_of_derang:171,a000203:56,temperatur:223,grid:[223,311,35,256,42],mon:[68,140,115,307],mol:[],alex:61,mod:[37,253,195,268,0,231,184,312,266,106,65,147,293,190,172,171],reshetikhin:[],bght1999:92,ascii_art:[44,73,76,45,235,236,237,7,239,240,84,167,13,227,89,252,256,180,234,32,194,238,117,285,122,204,301,302,220,224,291],chamber:[],either:[228,268,5,163,7,81,241,214,151,247,90,253,93,297,272,256,22,23,99,220,184,102,185,30,269,190,34,35,195,40,42,291,285,201,286,287,288,122,321,125,262,205,52,299,211,301,137,57,306,140,310,311,180,144,313,222,223,293,68,69,225],functorialcompositionspeci:294,thoeri:286,highestweightriggedconfigur:310,positions_of_unmatched_plu:21,brauer_diagram:186,cabc:42,citeseerx:209,ascend:256,type_reduc:302,cabd:42,viewdoc:209,polynom:[74,308],singer_difference_set:247,open_symbol:256,a132636:253,change_support:54,confirm:[228,272,160],a3xa3xa1:160,recomput:[304,312,171,220],h_new:184,setpartitionsbk:[19,169],inject:[137,171,220,146,165],banc2011:300,kmp:101,bessel:47,coarse_powersum:115,pmdiagram:106,pieri:[],stinson91:80,oa_11_80:[144,268],base_window:287,fsmoldprocessoutput:[190,184],designs_from_xml_url:125,symp:241,minuscul:[313,218,82],plancherel_measur:306,adams_oper:[258,228,68,272],lnsss12:218,x30:27,x31:27,ferrers_diagram:[253,211,301,180,117,7,122,293,224,306],standardpermutations_bruhat_smal:286,marc:[253,117],barvinok:253,belkal:52,stretch:[182,78],eviatar:33,is_monochromat:184,symmetricfunctionalgebra_orthotriang:188,pons2013:185,abbaabbaab:[312,42],fsm_simplifi:184,dagger:291,type_mark:89,linearextensionsofposet_with_categori:[198,163],dyckwords_class:256,permgroup_el:[170,171],terminolog:[18,57,171,229,247],global_opt:[286,211,76,256,264,22,117,7,61,310,185,180,122,321,21,293,224,301,306,269,291],mathematiqu:[5,311],strip:[211,280,180,58,7,306,52],yyi:108,hook_length:[306,293],reduced_express:286,complianc:140,brute:306,coeff_dab:162,mapcombinatorialclass:171,uppermechanicalword:307,"0601343v1":277,fundamental_weight:[228,160,234,235,236,6,238,239,240,167,11,13,310,89,281,254,143,259,101,21,106,108,205,275,276,277,237,264,203,291,191,295,132,302,218,142,220,221,243],a2xa2xa2:[228,160],abababb:42,to_pair_of_standard_tableaux:256,aguiar:115,bb05:199,conjugate_posit:42,enough:[253,286,208,143,6,82,147,35,68,20,269],despit:[286,227,237],olshanski:306,"_abcol":184,striker:212,sunris:184,assmu:137,powermap:306,youngrepresentations_seminorm:75,possibl:[228,33,158,78,5,271,7,165,81,208,167,184,247,268,171,88,251,43,253,93,289,178,42,256,104,143,148,48,220,27,15,185,30,266,296,269,190,35,301,37,195,280,283,285,119,46,21,122,265,290,291,163,295,130,131,272,298,212,57,306,74,140,61,62,180,144,63,146,147,222,293,286,69,225],height_poset:256,bruhat_great:286,crystalofriggedconfigur:264,from_contre_tableau:212,grothendieck:[304,115,77,163],compact_low:[306,293],from_noncrossing_partit:256,embed:[228,160,6,141,218,281,254,143,259,48,26,27,21,277,0,291,243,207,295,298,287,70,140,61,142,180,306,225],pieri_factor:225,krttorcbijectiontypedtwist:197,deep:[184,132],littlewood:[],deem:[171,88],file:[],structureswrapp:149,proport:[92,253,269],evaluation_partit:42,finitewordpath_triangle_grid_str:311,le2i:178,fill:[12,229,7,166,281,93,256,180,264,106,40,0,253,117,285,122,290,262,52,189,55,306,218,311,257,144,153],again:[253,195,256,276,198,140,184,311,144,141,65,163,190,68,286,130,269],dlxmatrix:133,tinv1:218,hybrid:306,field:[],binomi:[253,286,230,272,56,148,285,46,162,171,68,102,43],cleanup:[114,171],growing_lett:5,architectur:[291,163],right_action_same_n:257,tree_factori:84,skp2:211,apply_map:308,skp1:211,sequenc:[],vertex:[],buratti:247,to_affine_grassmannian:241,is_impl:[291,243],dulucq:[285,42],tensor_copr:68,type_e_affin:252,descript:[268,5,321,20,84,225,170,171,88,249,14,256,143,260,184,16,108,190,276,280,115,285,291,241,133,287,258,65,223,68],binomial_algorithm:43,permutation_nk:177,burrow:42,labels_as_input:184,number_of_partitions_length:306,represent:[],descent_composit:166,standardpermutations_avoiding_213:286,bk_promotion6:7,s_maxima:171,dollar:253,abcaab:42,emili:171,sumspeciesstructur:196,custom_format_transition_label:184,semest:218,children:[253,84,285,48,185,30,317,147,125,87,111,269],primarysimilarityclasstyp:222,plot_alcov:[143,276],vertex_label:[304,276],albrecht:130,preprint:[212,42,307,180,218,10,256],rank_from_list:303,lamschillingshimozono10:298,yalpha2:218,yalpha0:218,yalpha1:218,hc3t2:4,straightforward:[305,277,257,90,208],fals:[12,5,6,7,11,13,227,16,22,27,29,30,32,33,35,37,39,40,176,42,46,50,52,55,56,57,58,59,61,62,231,65,66,68,69,225,72,73,74,75,78,80,81,83,87,88,89,90,91,281,93,289,98,99,44,104,106,108,109,111,113,119,120,122,163,128,129,130,131,132,137,140,142,143,144,151,153,155,160,45,48,271,165,166,167,141,169,170,171,172,173,180,182,2,184,185,186,189,190,191,193,194,195,196,197,199,278,201,317,204,205,207,208,209,211,212,287,217,220,221,222,223,228,229,262,232,233,234,235,236,237,238,239,241,247,150,260,243,251,252,253,36,272,256,261,198,21,266,269,276,277,0,283,285,286,288,290,291,293,294,295,298,300,301,302,303,304,305,306,308,310,311,312,313,314,319,321],finitewordpath_cube_grid_list:311,witten:[112,52],markov:[198,0,184],fall:42,bottleneck:276,wsc:281,standardpermutations_bruhat_great:286,bucci:42,is_linear_extens:[185,304,163],is_atom:[29,229,237,291,115],secondary_dinversion_pair:128,form:[12,268,160,163,7,165,81,241,184,247,14,88,249,171,0,309,185,93,296,178,272,256,22,23,260,78,48,101,29,21,186,218,108,190,98,35,111,277,276,195,42,261,283,222,285,286,287,288,122,313,317,291,125,49,208,130,133,258,301,302,56,137,305,216,253,322,140,61,310,92,143,144,221,146,65,147,57,293,68,306,180,191],stirling_number1:171,stirling_number2:[171,229],finiteword_iter_with_cach:[312,231,307],a008275:56,recursively_enumerated_set:147,oa_9_120:268,a000112:163,lambert:56,edu:[286,272,256,306,7,61,46,144,163,128,209],to_chain:[122,7,301],bell_numb:171,zero:[228,312,77,78,5,235,243,7,241,84,141,244,11,14,88,249,87,269,253,289,272,307,257,22,260,1,100,101,21,106,218,310,190,301,155,276,195,184,40,315,42,283,117,285,201,319,122,265,248,293,207,166,130,132,298,258,211,212,56,305,306,59,140,61,142,143,144,297,313,65,147,222,223,68,69],multiskew:117,dualkschurfunct:77,mul2:229,further:[7,20,141,218,269,253,286,272,256,22,99,184,186,205,276,283,291,127,128,130,211,301,137,306,140,61,311,143,144,68],positive_real_root:143,ribbon:[],aba:[42,5,59,311,312,90],abb:[5,311,59,42],abc:[312,0,42,56,5,148,59,184,311,137,231,307,176,47,151,90],pluss:106,diag:180,abl:[253,286,301,261,299,101,257,144,68],default_format_lett:184,a001653:311,from_cycl:286,fw1:[228,160],unlabel:[253,230,30,137,285,163,48,84,288,317,66,35,16],fw3:[253,160],leeuwen:117,christo:305,macdonaldpolynomials_j:92,shawach2014:68,variat:[285,262,209,306],sophist:184,one_basi:[228,297,77,298,305,201,61,214,186,68,193],ansatz:310,omega_qt:68,valu:[5,7,11,14,43,22,23,30,35,37,40,176,42,46,56,57,58,59,61,92,141,65,66,68,69,70,74,75,80,83,84,88,281,93,100,101,106,108,113,117,120,163,47,130,131,132,137,140,248,143,144,146,165,168,171,178,179,180,48,184,185,188,190,205,195,261,278,317,206,287,218,220,221,222,228,229,208,269,253,36,272,256,258,21,266,251,62,277,0,283,285,286,296,290,291,293,298,299,303,304,306,308,310,312,313],fatter:[22,286,140,201],search:[],strong_generating_system:87,medici:308,indetermin:[115,179,285,199,163,100,140,184,222,43],fwf:[190,184],ac03:307,fixm:[21,141,291],is_fsmtransit:184,airport:146,dual_equivalence_graph:306,knill:5,factorad:286,"1805v1":185,fatten:22,end_nod:90,quotient:[],is_perfect:[106,285,11],"0x7f26ee273320":194,is_row_increas:7,primit:[229,5,6,127,90,253,93,258,184,276,40,42,283,115,288,163,207,297,306,140,61,311,143,144,222],set_latex_opt:[185,127,256,163],above_new:163,a000010:56,a000012:56,inappropri:184,a000016:56,cowardli:257,k_boundari:306,establish:[39,61],bober:[306,209],h1z:283,wirefram:[143,276],krttorcbijectiontypea2even:[197,255],distinct:[229,160,7,277,141,171,90,253,286,178,0,307,48,184,266,108,33,34,195,40,42,285,201,287,291,163,206,189,298,56,137,57,306,191,218,311,144,146,222,68],liber:122,regist:[283,260],two:[],ajanki:133,kr_type_bn_with_categori:106,tau2:0,tau3:0,circle_thick:143,tau1:[0,222],is_fin:[22,262,184],from_classical_weyl:241,itab:61,integerrang:253,desir:[175,253,276,5,291,59,285,61,143,184,147,163,307,269,225],deconcaten:272,leonard:[137,88,179],tranvers:144,cell_of_highest_head:180,particular:[155,229,77,78,6,7,81,166,141,218,13,88,90,253,286,289,272,22,309,182,184,185,21,266,269,34,193,37,276,195,40,283,285,119,287,122,296,291,163,82,130,208,301,137,305,70,140,61,142,143,144,146,66,316,68,306,243],graft_on_root:48,set_print_styl:68,oa_relabel:144,seminorm:[75,61],dictat:[236,163],none:[1,12,5,6,7,11,13,14,227,16,43,265,20,22,23,26,29,30,32,35,37,40,176,42,44,46,50,107,52,54,56,57,58,59,61,92,141,66,68,69,71,72,73,74,75,78,321,82,83,84,88,89,90,91,281,93,289,0,98,99,100,101,15,18,106,108,114,116,117,36,119,120,122,159,125,127,128,130,131,132,133,137,140,143,144,147,148,149,151,154,155,160,45,48,163,166,167,168,169,170,171,172,174,179,180,182,2,184,185,186,231,188,189,190,191,194,196,200,201,203,204,205,9,207,297,211,212,287,216,217,220,221,222,223,224,225,228,262,234,235,236,237,238,239,240,241,214,246,247,150,251,252,254,272,256,307,258,259,261,21,266,269,273,275,276,277,278,280,284,285,286,288,112,290,291,293,294,295,282,298,301,302,303,304,306,308,309,310,311,312,313,317,318,319],vladimir:33,cluster:[],det:[306,240,81],permutation_iterator_transposition_list:257,tau_to_bitrad:0,taum:143,suter:306,berstel:[286,42],del:184,z_n:0,rs_partit:286,cartan_typ:[228,73,76,232,160,45,235,236,6,238,239,240,241,167,11,13,170,227,89,295,252,281,286,254,21,143,23,24,233,26,101,44,234,106,32,310,205,155,276,277,237,194,264,119,265,290,204,243,207,50,82,296,132,302,287,70,218,142,220,221,313,259,69,153,291],def:[228,229,160,7,165,321,82,214,218,247,171,269,253,286,289,272,256,307,22,78,182,184,102,185,111,300,37,42,283,285,201,288,122,296,163,20,130,54,192,211,306,140,61,142,299,220,147,222,68,154],deg:222,to_difference_famili:208,b_0_57:88,concten:22,share:[253,195,211,311,276,22,201,184,185,21,163,13,268,68,269],shard:[],pro:141,minimum:[93,229,211,137,283,306,169,184,241,311,304,186,163,207,269],category_singleton:201,bk1:7,explor:[253,276,143,283,285,184,84,147,269],initial_st:[190,184,147],robinson:[],emptyspecies_class:1,is_positive_root:[155,295],weaktableaux_abstract:180,dy93:199,awkward:61,"0401089v2":285,rauzy_graph:[231,42],additiveabeliangroup:247,mapl:[253,218,42,46],larsen:212,ryu:108,cartesianproductwithflatten:141,standard_tableaux:[306,293],needn:154,find_thwart_lemma_3_5:[195,251],standardpermutations_recoil:286,prod0:289,prod1:289,prod2:289,sami:306,s0218196713400171:115,deodhar:205,associ:[4,5,6,7,11,13,16,297,143,23,24,30,32,35,39,46,50,74,61,92,66,68,75,83,84,89,281,93,101,106,117,163,140,142,198,146,149,155,161,243,167,141,48,184,185,205,193,195,9,207,20,287,217,220,228,229,232,233,234,235,236,237,238,239,240,241,242,247,112,256,307,258,259,144,21,266,62,276,277,0,283,115,285,286,288,36,291,293,301,302,306,309,310,311,313,319],uwaterloo:222,qqz:4,mols_15_4:268,boundary_delta:52,"_monomial_coeffici":283,is_generalized_cartan_matrix:69,is_even:[171,286],qdm_21_6_1_1_5:268,misra:[106,296],map1:20,alph:22,meetsemilattic:[29,163],diagonal_word:128,allows_loop:163,los12:106,rotat:[276,40,212,0,307,98,306,7,184,225,285,52],dancing_link:[183,40,0],boolean_answ:137,just_numb:319,set_label:84,unimod:[306,43],coveringdesign:173,through:[214,228,229,268,4,163,7,80,241,83,84,141,169,14,102,249,171,251,17,309,92,286,88,272,256,22,259,260,160,266,184,28,185,186,188,269,190,35,155,243,37,115,42,253,283,278,285,201,319,291,125,49,127,128,129,189,258,208,212,242,304,306,59,322,140,61,310,62,180,144,146,314,147,295,68,153],hivert:[229,40,256,84,283,306,74,48,2,27,82,285,30,291,171,128,151,16,269],abbabaababbabaababbabaababbabaababbabaab:[311,36],antipode_on_gener:140,"montr\u00e9al":42,edge_color:[137,52],directsumofcryst:191,chap003:137,lm2011:[229,115],itervalu:137,is_primary_bitrad:0,finitemeetsemilattic:[29,163],subsets_:74,krat99:7,lato:140,pq_group_bitrade_gener:0,finiteposets_n:163,ext_rep:125,hkott2002:310,jucys_murphi:[214,61],starting_weight_par:11,timestamp:173,pollut:69,inria:253,oxford:[83,286,211,42,283,308,309,92],aka:[],complain:291,varianc:184,super_categori:[298,277,297,272,77,143,305,140,241,201,68],ful1997:7,robbin:212,"_test_category_over_bas":201,easili:[253,300,211,256,42,5,283,61,62,184,287,171,68,260,272],compositions_constraint:22,treilli:185,plot_bounding_box:143,ambient_lattic:[277,237,143,259,6,239,218,142,240,295],g_matrix:319,interleav:148,krtableauxtypevert:281,hard:[146,6,68,253],idea:[253,283,306,165,184,266,125,247,90],functor:241,connect:[228,241,10,11,281,286,272,217,180,184,186,40,42,253,283,117,285,291,163,127,132,319,211,304,137,70,140,258,221,68,69,306,225],simion_schmidt:286,energi:[223,21,11,218],thing:[214,276,286,229,40,56,22,215,287,96,163,82,84,122,307,125,90],orient:[253,276,319,40,78,285,306,211,217,184,30,218,163,127,35,286,52],braquet:231,admiss:[207,108,132],s10998:184,zeta_polynomi:[300,189,163],rauzi:[],c4xa2:13,"0503040v3":286,sloan:[],variable_nam:16,rootedorderedtre:48,inclusionwis:37,a057b98:42,non_symmetric_macdonald_polynomi:218,pleasant:253,cartesian:[],is_non_attack:12,stan2002:211,p_inverse_automorph:265,omit:[286,160,306,7,186,101,248,122,221],inbetween:[286,7,306],powersum:[297,280,78,116,260,115,174,214,283,49,258,14,68,249],parent_with_r:[272,297,140,201,241],nb_node:285,h_polynomi:163,pleas:[7,84,11,171,269,311,289,180,184,30,35,276,283,285,119,46,122,291,163,177,137,59,62,231],compositiontableaux_s:166,exchang:[114,256,42,5,217,146,11,319],nonnegativeinteg:[253,306,47],cadb:42,llt3:[283,4],done:[5,7,81,82,84,150,286,143,98,48,184,161,108,195,40,42,283,20,209,298,305,306,59,62,312,198,146,147],stabl:[43,211,225,160],is_bound:[304,163],bij_type_a:[113,85,103,105,10,109],bij_type_c:[103,104,255,181],bij_type_b:[104,10],bij_type_d:[197,10,109],construct:[],a000225:56,statement:[286,306,285,61,312,292,154],pierifactors_type_a:[225,240],pierifactors_type_b:[239,225],translated_orthogon:40,stirl:[242,53,171,229,56],finitewordpath_dyck_list:311,equivalence_class:184,akad:58,park:[],pari:[42,56,306,293,171,47,209],a061084:56,part:[],pars:[281,7,122,125,190,205],is_connect:[137,211,184,163],incomplete_orthogonal_arrai:[144,268,251,17],contrari:285,"18e":80,product_finitestatemachin:184,satisf:[258,249,140,14,68,260],horizont:[281,286,76,256,180,164,58,7,2,264,310,185,106,223,207,319,306],matrixgroupelement_gap:205,"_______":[128,256],kr_type_bn:106,highest_root:[143,228,155,240,142],"_new_initi":289,pierifactors_finite_typ:225,is_symmetr:[272,231,42,27,165],accepting_styl:184,compositionspecies_class:91,is_transversal_design:144,word_out_funct:184,built:[268,160,6,165,241,84,141,184,247,88,251,286,20,180,259,174,266,176,190,35,276,195,163,82,52,131,302,59,311,144],to_string_end:11,worddatatype_it:[311,231,36],bf1999:163,right_tableau:[286,20],lucas_number1:[171,65],build:[],lucas_number2:[171,65],nablapiec:52,"_add_abstract_superclass":302,a2xa2xg2:160,s_sage:171,littelmann_path:11,distribut:[],reduced_form:296,previou:[83,276,291,0,4,22,281,117,253,184,92,144,218,163,190,62,171,132,269,43],compo:272,q_project_on_basi:142,standardepisturmianword:307,freemodul:141,most:[5,6,7,11,15,16,43,22,24,29,30,35,40,176,42,262,55,56,57,58,59,61,62,63,65,66,68,74,268,77,78,80,84,88,90,92,286,289,0,98,99,100,102,106,108,114,119,122,163,127,128,130,189,137,140,142,143,198,147,154,155,160,125,164,165,166,141,169,170,171,178,179,180,48,2,184,185,186,231,131,190,205,195,261,200,201,317,206,209,211,212,287,217,218,220,222,228,322,237,208,247,150,260,269,253,112,272,256,257,144,21,266,276,277,278,280,283,115,285,303,296,291,293,295,298,299,301,304,305,306,307,308,311,312,319,243],wonsev:184,charl:[144,88,268,195,261],prentic:171,trie_type_dict:90,charg:[180,220,7,301,42],decreasing_children:185,r_tild:199,combinatse10:78,adalbert:306,number_of_tunnel:256,halllittlewood:83,row_perm:0,"0x7f26f90aaed8":89,int_to_coord_dict:40,symmetrica:[83,283,68,7],summer:93,carefulli:147,fini:43,particularli:[253,133,59,216,286],subhypergraphsearch:146,unique_represent:[4,6,7,11,50,265,22,23,27,30,35,107,52,70,92,58,225,72,76,77,82,83,91,286,282,99,101,18,108,114,284,117,222,122,159,163,132,140,198,147,71,153,166,141,170,178,180,48,185,205,196,199,317,9,207,211,212,287,221,305,223,229,241,242,246,112,272,256,1,264,21,273,283,115,285,254,290,291,293,298,301,33,306,308,309,310,313,315],iter_final_st:[190,184],fine:68,dual_incidence_structur:137,fosc78:[286,42],shuffle_product:[22,34,136],execut:[311,253,285,184],algebrascategori:142,merger:184,max_quantum_el:155,affine_weyl:241,twolin:286,reduced_word_of_alcove_morph:277,paths_in_triangl:164,finitedimensionalalgebraswithbasi:[141,61],fibonacci_numb:171,unus:0,a002620:56,express:[228,76,78,165,241,27,247,260,253,286,296,272,264,21,191,42,115,203,298,140,61,92,313,68],relabel_system:129,to_132_avoiding_permut:[285,256],ferrer:[253,211,99,163,7,293,306],sum1:289,overlin:184,knutsontaopuzzlesolv:[158,52,121],restart:319,semistandardtableaux_shap:7,tevlin:[162,140],misnam:92,gosper:253,projectivegeometrydesign:[88,17],basis_nam:[280,116,283,174,188,68],ababa:[311,312,150,42],e_string_to_ground_st:21,associated_parenthesi:256,type_fold:[70,291],is_number_of_the_third_kind:56,try_default_rul:160,tikz_trajectori:311,zolotarev:306,ababb:[5,90,42],latex_color_decreas:185,precompos:220,semistandardtableaux:[58,7,122],decompos:[],demazure_lusztig_oper:[142,218,82],standardpermutations_al:286,statistical_mechan:223,reserv:[133,184],reading_permut:256,restriction_outer_shap:122,nonintersect:[269,56],acbba:5,someth:[286,256,42,307,22,283,306,285,184,142,62,84,33,171,129,262,154],fano:[137,268,173],smallest:[229,6,7,240,171,173,29,286,272,256,143,259,185,30,187,269,34,42,253,291,163,127,295,52,189,56,33,70,180,220,147,151,306],cores_s:99,to_binary_tree_tamari:256,abbaababbaabbaababbaababbaabbaababbaabba:307,subscript:144,experi:[5,6,165,272],altern:[],krriggedconfigurationel:220,complement:[185,195,256,42,22,286,7,140,241,29,304,220,225,163,20,273,272],"4gb":257,cmp_letter:59,rctypea2du:310,b4xa2:13,complementari:[306,285],purpl:[5,276,306,311],popul:20,"20solomon":305,loehr:[12,165,218],xtree:125,set_speci:[107,41,78],alon:168,finitewordpath_triangle_grid_cal:311,finitewordpath_all_list:311,lower_dyck_word:[185,256],simpli:[228,229,76,160,241,264,127,13,227,281,256,307,143,184,186,35,277,42,253,283,291,293,207,262,301,302,137,70,140,218,310,220,147,69,306,153],point:[],instanti:[265,56,23,165,84,183],oa_11_185:268,filled_cells_map:0,littl:[253,218,61],td6_84:144,zeta:[171,193,163],throughout:306,t23322:30,backend:276,hopefuli:142,faithfulli:277,highest_weight_dict:106,palindrom:[5,312,307,42,56],add_vertic:[106,291],"_ascii_art_":285,from_coordin:106,tw_invers:[142,218,82],loopless:102,symq3:283,is_empty_column:0,highest_weight_dict_inv:106,poloni:130,chevallei:286,crystaloftableauxel:[21,296],aaabb:42,untrunc:144,gap:[286,0,137,306,15,244,293,205,171,88],understand:[276,129,307],a5xa1:160,repetit:[286,140,31,63,147,171,151],hrepresent:24,clockwise_rot:52,solid:276,is_antichain_of_poset:163,pon2010:225,fun:[283,199],anonym:[253,147],mbox:184,propag:[186,19,169],symmetricgrouprepresent:[75,121],leg_length:[306,293],only_highest_weight:310,dg2:217,a000079:56,itself:[74,125,7,241,0,14,150,90,253,303,272,258,259,309,48,2,30,190,37,276,277,42,283,122,290,163,52,300,301,137,70,59,140,61,62,146,68,306],kazhdan_lusztig_polynomi:199,a000073:56,jack_famili:309,regoctdirectseq:78,affine_retract:[218,82],tetrahedr:56,act_on_affine_lattic:313,tamari_join:285,change_label:[91,149,318,71],pisot:[5,93],huangtamari1972:185,lamschillingshimozono2010:298,sym:[77,4,309,83,14,260,43,297,272,258,249,174,188,280,116,283,115,49,47,298,322,140,92,68],moment:[253,311,302,308,184,62,247],stripe:280,syt:7,ord:285,standard_major_index:7,nameless:122,g_vector:319,travers:[253,286,285,201,185,84,207,132],simplicial_complex:163,entri:[],noncommut:[229,165,272,162,115,140,201,68],parenthes:[253,286,256,7,149,16],to_classical_highest_weight:281,positive_root:[228,276,302,155,143,235,236,237,238,239,240,234,132],fractionfieldel:319,"alg\u00e8br":256,runtimewarn:[22,283,47,165],countsubblockoccurr:[190,184],product_speci:71,explan:[195,218,184],gelfand:[],laaaa:306,"_michael":47,halllittlewood_qp:83,izip:182,rchwnonsimplylacedel:[220,264],lyndon_factor:[68,272,42],alcove_label:[143,276],shape:[],ldw:128,world:[182,310],doran:260,bt13:115,cut:[254,256,42,56,285,165,300,185,112,108,163,269,272],fd06:283,cur:133,cup:[137,286,256],mobius_function_matrix:[304,163],num_cal:37,bessenrodt:68,cartantype_decor:[13,167,89,291],latex_mark:291,rgb:[276,93],duplicate_transition_ignor:184,cul:128,heidelberg:42,bin:311,bij:[197,104,113,109],big:[93,142,144,146,292,43],rsk_invers:262,square_grid:311,remove_cel:[306,168,293],is_increas:7,bit:[228,277,276,5,287,307,165,184,257,186,146,190,170,171],retakh:[162,68,165,272],semi:[],acheck:291,princip:[253,217,321,311,222,319,69],"_mul_":82,abbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb:5,zabrocki:[298,256,77,180,99,115,140,128,68,306,272],outer_corn:211,omega_t_invers:298,bruhat_inversions_iter:286,often:[253,286,293,56,259,306,74,7,61,82,62,186,146,184,163,171],test_psi:140,back:[48,125,7,247,150,175,281,42,0,100,27,106,276,277,280,283,285,163,128,272,298,299,212,305,306,140,142,220,68],bach:33,permutohedron_join:286,powerpartit:306,scalar_t:68,tree_orient:90,sizeof:146,symmetricfunctionalgebra_generic_el:[83,4,283,309,174,92,188,68],cherniavski:286,scale:[228,93,256,276,70,201,27,185,92,168,218,108,68],iter_process:184,is_chevie_avail:170,adjoint_represent:[228,160],cartantype_simple_finit:291,l11:290,l12:290,pell:56,substitut:[],incoming_path:200,larg:[],affinepermutationgrouptypea:287,carpent:[],reproduc:[262,317],patient:[218,307],subset_speci:273,s13:137,surject:[34,254],oei:[253,230,311,56,285,48,101,18,242,163,47,210,269],cyclotomicfield:[68,140,272],automorph:[72,228,160,125,81,208,84,14,249,253,265,272,258,21,106,276,277,280,284,201,291,163,49,107,241,137,287,70,140,218,313,318,68],impos:[185,117,269],graft:[285,30,48,16],to_catalan_cod:256,constraint:[],finitewordpath_dyck_tupl:311,pseudopalindrom:[312,42],to_dual_classical_weyl:241,softwar:283,supplementari:253,subpartitionalgebra:186,on_gener:[140,201],kronecker_symbol:306,generalizedtamarilattic:164,a006530:56,root_sytem:259,symmetricfunctionalgebra_elementari:249,block_stabil:247,inclus:[286,300,256,61,185,111,189],group_divisible_design:[144,278,266],a_tupl:321,dalal:[180,52],save_po:[319,217],cached_method:[141,291],tinglei:21,handbook:[268,261,144,184,266,247,173],includ:[228,312,160,293,7,165,171,307,173,17,253,93,289,256,21,22,48,184,30,311,190,35,301,277,114,40,42,283,200,286,291,163,12,132,212,56,137,33,306,59,309,61,142,92,143,65,68,243],forward:[286,130,0],oblong:56,gir12:18,is_prime_pow:[247,144,208],ht04:283,add_vertical_border_strip:306,save_quiver_data:35,gallup:180,murphi:61,qsn1:61,width_n:104,concaten:[286,272,42,84,22,305,7,26,184,140,30,144,231,283,122,150,190],we07:88,principal_order_filt:[304,163],f4xa2:302,verma:254,magma:[140,241],plethysm:[160,258,283,165,83,68],rnode:115,to_ncsym:140,plethyst:[92,283,260,78],noninvers:[286,61],triangularli:[92,14,188,309],stype:160,curv:42,claytonsmith:266,constant:[77,82,11,171,269,93,289,256,22,182,184,106,276,42,303,290,130,298,306,286,223,68,154],a080937:253,frobeniusschurfunct:306,word_opt:60,singla:222,rcw71:80,null_root:[143,259,218,142,101,243],lacuna:42,ordered_set_partition_act:[229,115],number_of_right_special_factor:42,sequenti:93,wordpaths_north_east:311,parikh:306,yang:[],a000244:56,tableautuples_s:301,richomm:42,varadarajan:228,mismatch:211,papa:150,polynomialr:[228,272,179,283,199,285,322,184,154,186,46,47,306,43],cater:56,lenz:[247,80],glpk:137,schiffmann:100,thibon:[272,42,4,162,285,165,27,283,68],haiman06:[218,142],is_involut:5,kboundedr:[298,77],uniroma1:272,gr1993:68,aorder_chang:[289,78],coorind:301,number_of_tamari_invers:[185,285,256],bbssz2012:[162,68,140,272],jason:[301,7,201,272],shift_right_transit:184,queri:[195,261,20,266,163,251,17],rsrrsrsrrsrrsrsrrsrsrrsrrsrsrrsrrsrsrrsr:307,semi_rsw_el:61,onlinelibrari:268,ellipt:35,binarytrees_all_with_categori:285,substitute_funct:253,degree_neg:[68,201],wt_repr:228,"s\u00e9r":42,privat:[277,130,0],garon:[42,307],insert_altern:185,antisymmetr:61,polyhedr:[],ryser:[88,130],elsewher:[35,186],dm_993_32_1:268,nonposit:220,p2p5:[19,169],kks07:221,kmr:[306,293],queen:253,proctor:7,set_coordin:184,algebr:[235,236,272],volum:[256,286,40,212,42,261,0,283,306,7,80,310,92,187,203,298,163,268,262,285,90],finitemeetsemilattice_with_categori:[29,163],designs_pyx:[57,144,268,195,251],untouch:163,implicitli:[190,184],assaf:306,sagex_d:285,orthogonal_arrays_find_recurs:[144,195,251],internal_nod:66,macdonaldpolynomials_:92,mas906:286,incomparability_graph:163,cyclicpermutations_mset:286,algebra_morph:140,appar:[137,301,272,163],is_admiss:132,shard_preorder_graph:[300,189],julianabel13:268,abaaba:[312,42],crystal_of_letters_type_e6_el:290,initial_forest:185,stereograph:253,some_flashy_featur:47,graph_implementation_rec:117,acual:5,aaaccaccacacacaccccccbbdd:311,velt:[76,310],carlo:[283,0],croc:311,append:[286,40,84,57,257,7,184,102,247,30,144,307,269,206,262,285,90],nr_to_find:0,gascom:42,is_t_design:[129,137,57,80,266,125,88],maud:306,restrictionofcryst:127,enumeration_mod_permgroup:87,alternating_sum_of_composit:201,hpolynomi:163,deduc:[253,286,272,163],perimet:[311,256],bergeron:[311,115,41,42,307,59,140,92,231,272],closur:[286,229,42,307,184,312,300,290,163],intercept:307,sink:[127,319,217,184,163],t0c:142,vertic:[276,76,232,233,7,240,84,264,169,16,90,266,253,286,254,256,104,143,23,24,48,2,184,185,30,186,106,109,128,205,35,37,113,42,197,164,200,285,119,120,288,317,291,163,207,50,130,189,132,300,211,137,306,217,310,62,304,198,231,146,66,223,319,220],output_r:190,implicit:[144,90,42],remark:[253,272,276,143,24,140,92,130],broken:[22,143],later:[253,276,283,184,20,84,198,147,295,269],visuallli:306,conjugacy_class:286,implement:[],proof:[253,195,129,268,272,305,306,7,80,140,185,163,68,260],brauer:[228,186],configur:[],ption:311,foundat:[276,254,42],azazaza:42,palindromicdefectword:307,lower_cov:[287,163],k93:26,totally_ordered_finite_set:176,chi:[228,75,160,115,140,225,297],extraspecial_pair:143,latex_layout:5,websit:68,specularcolor:276,chr:[137,278,285],regularcryst:139,genericspeciesstructur:[72,91,246,284,318,159,149,294,107,273,71],butler:43,conj:283,painfulli:68,type_relabel:167,aca:[90,163],trail:[256,42,258,260,306,7,184,122,14,68,249,130,269],induced_hypergraph:146,rbibd:[],billei:225,column_containing_sym:0,adamczewski:307,iii:[228,195,268,256,160],mols_tabl:261,account:[93,259,218,82,146,184],alik:285,tunnel:256,alia:[7,13,227,43,265,22,24,29,30,176,42,107,58,74,68,71,72,73,75,89,91,281,286,282,99,106,108,117,122,145,159,163,189,132,143,198,153,155,45,243,166,167,141,169,171,178,180,48,185,190,205,196,207,211,212,287,222,223,224,44,229,234,235,236,237,238,239,240,242,246,272,256,307,259,1,264,21,273,275,284,285,291,293,294,301,302,306,308,310,313,314,318],aababb:[311,42],cambridg:[256,41,42,307,5,283,7,80,101,29,122,163,247],salscr:264,a090015:56,binary_expans:190,"sym\u00e9triqu":256,finitewordpath_square_grid:311,fetch:[170,140],abcd:[229,42,307,5,148,184,311,231,34],oa_11_160:[144,268],wieland00:212,abcb:90,cycleindexseriesr:78,aco:90,sligthli:62,slender:163,kirkmman:80,onlin:[253,56,17],categoryobject:101,indecompos:69,prece:92,everywher:[5,283,40,140,282],dualiz:11,andersen:0,gcd:[111,272],dualis:268,forest:[253,230,304,285,185,147,128,111],iterated_right_palindromic_closur:[312,231],bbabbaca:42,is_domin:[143,243],isomorphic_subposets_iter:163,subcas:65,is_semisimpl:222,to_alternating_sign_matrix:[223,286,256],zs1_iterator_nk:209,a079908:56,mytailorispoor:150,klebertre:[207,310],fibonacci_til:[311,307],inst:[305,42],a000583:56,modulemorphismbylinear:201,redund:[122,171],subcal:286,"0x7f8fbe3ad320":[],tableaux_s:7,scalar_nam:[68,280],is_quantum_root:155,abababaabab:311,number_of_special_entri:58,correspond:[],dendriform:272,braquelair:311,tuples_sk:31,is_independent_set:37,nieuw:[185,56],cartesian_embed:141,a000720:56,categorifi:[301,293],from_highest_weight_vector_to_pm_diagram:106,save_imag:[319,217],compositions_ord:162,interval_cardin:[185,285,256],add_edg:[137,291,106,119,217],austrian:[190,184],bruijn:[],word_char:[231,271],bunch:184,dwb:256,induced_substructur:137,searchforest:[111,317,147,163],to_ambient_space_morph:[143,155,295,243],nr_of_check:[319,217,120],oss03:[207,220,310],basis_extens:243,l1r0:[285,256],breadth_first_it:207,eur:42,dad:140,cddcdccddccdcddcdccdcddccddcdccddccdcddc:307,dag:[304,211,163],rtusuusususuturrsust:311,greater:[228,312,77,7,241,225,87,88,286,296,282,256,307,22,99,184,185,283,42,261,164,285,122,163,207,262,211,212,304,306,60,143,222,68],"__getitem__":[303,291,307],dan:[286,256,42,306,218,185],dai:[52,184,80],mention:[210,269,160],cdcdc:42,strive:291,coord_to_int_dict:40,idescents_signatur:286,vector_spac:311,left_to_right:[185,286,285],isblockdesign:137,is_hyperbol:69,marked_nod:[89,291],factor_occurrences_in:42,bcabca:42,disregard:285,krtableauxtypehorizon:281,beween:68,thwart:[195,268,251],semilattic:[],factorial_gen:78,current_box:62,schubertpolynomial_class:314,fluctuat:184,a046660:56,cache_matric:75,descentalgebra:[305,140],rep:[228,256,125],dorota:128,ret:[281,55,76,310,220,262],cwi:144,stud:[58,4],from_kbounded_to_grassmannian:[99,306],a018252:56,red:[276,93,40,311,5,306,185,143,198,225,223,127,52,291],ree:[144,268,195,251],llt_class:4,m_to_s_stat:162,random_el:[72,59,230,161,7,242,246,169,171,107,91,253,286,19,178,256,96,22,98,262,30,114,284,0,196,200,285,122,145,126,159,128,47,130,299,301,137,287,58,74,308,149,151,306,71],bwt:42,jessica:212,insid:[298,40,301,160,99,115,48,218,311,144,317,291,293,290,87,306],cyclicsievingpolynomi:172,frank:[33,163],kolakoskiword:[42,307],rairo:312,"gl\u00e2nffrwd":165,releas:184,afterward:[257,286,52],quo:253,ymax:311,dirichlet:[58,218,208],aabcacbaa:47,bowman:306,simplegraphspeci:[294,230,78],semistandardskewtableaux:[117,122],pre_order_traversal_it:84,oa_12_522:268,oa_9_40:[144,268],combinatorialfreemodule_tensor:141,retain:68,exp_lattic:241,south:[211,256,306,7,184,311,144,52],rootedtrees_s:48,pgf:184,finest:22,suffix:[],pgl:137,from_dyck_word:[185,2],is_zero:[276,289,184,142,141,190],overwrit:7,rauzy_fractal_point:5,knuth_correspond:7,sylvester_class:[286,285],"_test_distribut":[83,4,258,322,309,92,49,14,249],messag:[143,311,144,173,307],sadli:235,bounded_decr:316,max_depth:[275,108,221,10,147,9,132],from_ordered_tre:256,return_b:220,partitiontuples_level_s:293,v_5_1_bibd:266,aabc:5,kr_type_spin:106,dendrog_cmp:30,prune:[253,291,147],mackei:305,directsum:[191,263],structur:[],charact:[],num:[247,144,88,195],to_weight:101,bitrad:0,unorderedtupl:[31,171],to_simple_root:[143,142],have:[5,6,7,225,13,16,123,22,26,27,29,30,35,37,40,176,42,262,52,56,57,70,74,60,61,62,141,66,68,69,268,77,78,82,84,87,88,90,281,93,98,99,100,101,231,108,113,116,119,122,163,127,129,130,189,137,140,142,143,144,146,147,153,12,157,160,243,165,166,168,171,173,180,48,184,185,186,190,205,195,261,278,201,203,206,207,208,211,287,218,220,221,222,228,229,234,238,241,269,253,254,272,256,307,259,21,266,275,276,277,0,283,285,286,290,291,295,298,301,303,305,306,310,312],s3_9:137,data_structur:304,"0x7f26f666b2a8":32,scalar_zon:309,min:[72,78,246,269,91,286,289,282,1,184,273,41,196,284,159,163,294,107,54,66,222,318,68,71],giraudo:18,llt_cospin:4,restrictedgrowtharrai:118,mid:184,plot_cryst:143,mix:[283,140,61,102,313,184,121,163,241],partitions_in_box:[58,106],tableauopt:122,primitive_length:42,mit:[225,256,163],jaap:56,is_lower_semimodular:29,unless:[286,115,272,256,143,283,306,163,48,165,61,217,30,122,184,222,319,269,43],dyckword_complet:256,sfu:268,llt3t2:4,eight:[276,195,251],realnumb:22,raise_action_from_word:7,dmitri:61,"3759v5":306,sfa:[83,280,4,258,260,309,174,92,188,283,14,68,249],homogen:[],number_of_nest:308,gather:[278,266,312,144,247,131,17],request:[143,163,251,56],bijeciton:262,degreesequ:62,descentalgebrabas:305,occasion:[305,286,272],explore_existing_st:184,latex_tikz_scal:[185,256],standardtableaux_shap:7,rctokrtbijectiontypedtwist:197,text:[143,276,163,184,125],abelthesi:[144,268],nw_corner_sum:212,matrixspace_with_categori:253,longer:[253,286,301,180,7,306,48,119,184,108,171],up_to_equival:[319,217],weyl_character_r:[228,101],noncrossing_partit:256,nachrichten:286,diamondposet:[29,189,163],categor:283,arrow_head:311,insert_cel:168,bernard:4,breadth_search:147,irreducible_compon:35,bindable_class:[272,305,297,140,241],a000261:56,inferior:42,elementwis:282,krttorcbijectiontypea2du:181,cell_of_marked_head:180,affine_lift:[218,82],syst:42,disagre:35,desarguesianprojectiveplanedesign:[137,88,17],is_symmetriz:69,increas:[7,166,171,249,14,269,281,286,272,256,22,260,48,101,185,30,311,34,111,42,288,317,163,128,189,258,301,56,287,306,61,62,143,220,147,68,153],"8356v1":272,ks5:298,ks4:298,ferenczi:42,ks6:283,ks3:[180,283,298],ks2:298,is_finitestatemachin:184,oa_17_560:268,monom:289,zamboni:42,blogspot:171,integr:[],partitionalgebraelement_ak:169,tlist:180,shapiro:35,schonheim:173,apply_simple_reflection_left:287,is_integral_domain:68,apolog:133,affinecrystalfromclassicalandpromotionel:[265,106],kazhdan_lusztig:199,hhl05:165,crystal_of_letters_type_c_el:290,"0012365x9290368p":7,ncsf_qsym:[272,162,68,140,201],pattern:[],boundari:[40,42,304,7,311,223,52],picklabl:147,partition_list:[113,85,76,181,197,220,264,310,103,104,105,168,10,292,109,255],lengths_maximal_palindrom:42,post_process:[111,147],progress:[253,42],vicari:183,fromtableauisomorph:10,wwwmathlabo:117,alternating_group_bitrade_gener:0,demazure_charact:228,facade_set:189,naito:[11,218],vrc:[76,264,310],moebiu:[163,140,56],hof:5,outer:[228,258,211,160,22,306,7,186,184,180,122,106,21,169,224,68,130,154],are_hyperplanes_in_projective_geometry_paramet:88,legit:287,classical_elt:265,rtype:160,proemin:158,recurrencesequence2:56,cospin_polynomi:117,equat:[253,277,272,42,4,143,78,100,286,27,309,92,65,66,190,218,68,260],cartesianproduct:[253,299,158,276,287,140,141,47],freeli:241,pbd_from_td:266,weaktableaux_core_with_categori:180,comment:[195,306,6,184,81,269],allows_multiple_edg:163,triangular:[],urdial:283,contents_of_head:180,hadamard3design:[88,17],is_prim:[253,171,147],denis:256,preview_word:184,"46c":80,rjust:171,finitewordpath_square_grid_list:311,weight_r:[91,196,161,66,294,71],edge_iter:90,a0000000000000000:84,bu95:247,accepting_show_empti:184,initialize_coefficient_stream:289,"_unlabel":84,alphave:[143,155],eigenvector:[5,218,142,92,65,68,82],is_flush:253,australasian:144,tamari_great:285,ncsym:[297,115,140,27],assert:[268,80,82,141,247,88,251,254,307,259,144,102,29,266,276,195,0,201,317,291,163,130,137,58,218,142,220,151,306],canonical_label:[72,318,246,84,137,285,284,48,217,163,185,30,159,66,149,107,273,71],bull:[305,93,306,195,42],antidomin:[143,142],t0_check:218,determinist:[217,184,120,190,127,319,90],multi:[286,256,42,117,200,184,198,163,247,66],coxetergroupaspermutationgroup:170,plain:[286,61,311,257,163,170,269],rectangular:[281,40,7,166,21,223,310,153],finitewords_length_k_over_orderedalphabet:[98,59],defin:[],vspace:[185,207],splite:220,kyoto_path_model:203,szege:304,left_key_tableau:7,backtrack:[],binarytre:[185,84,285],format_lett:184,subsetspeci:[149,294,78,273,66],srang:[190,184],finite_class:145,parikh_vector:42,catalan_numb:[253,171,256],noncross:[143,171,229,256,300],substanti:253,fiddl:201,partner:[286,308],undecid:269,family_of_vector:276,h_parent:201,kumar1987:142,nonneg:[228,229,155,6,7,166,242,14,249,171,269,43,253,286,112,272,179,22,260,48,101,18,30,34,114,280,317,164,201,46,122,203,291,163,49,262,189,258,211,256,56,305,306,59,322,140,61,310,311,143,221,147,224,68,180],kleber1:207,kleber2:207,allow_subtrad:0,a002378:56,check_sets_from_it:102,quadrupl:[],wolfgang:42,new_base_r:141,infer:261,morrison37:222,iterative_post_order_travers:84,denot:[229,78,243,7,165,241,242,184,0,14,88,249,171,43,281,286,296,42,143,260,160,26,101,185,283,190,277,280,253,198,115,285,201,310,163,49,127,130,272,55,212,56,305,70,140,61,142,258,144,221,313,65,222,68,220,306],a003022:206,matrix_integer_spars:69,handi:276,bispeci:42,ioa:144,radix64:176,center:[276,40,256,42,160,143,217,241,291],nevertheless:186,hk02:[9,203,26],mutation_class:[],thought:[276,301,256,283,58,266,290,306],brrz08:[115,140],collin:308,usual:[228,160,5,6,7,165,241,218,13,14,249,16,281,286,296,42,179,307,143,259,184,185,30,283,190,243,276,195,280,253,164,115,201,290,291,163,49,127,295,82,301,211,212,303,306,74,140,61,142,258,220,147,293,68,153,225],unari:190,abac:[312,42],test2:306,vakil:52,freepreli:16,category_over_base_r:[143,277,201],position_of_first_return:256,freepreliealgebra:16,wagner:184,jeroen:171,azaaazaazaazaaazaaaza:42,surpass:[122,256],"_transition_funct":90,dtrs_protocol:125,systemat:[195,259,218,142,291,163,68],setpartitionspk_k:169,wether:[247,261],adv:[298,286,254,301,256,4,305,293,308,101,283,162,68],adw:256,groupexp:241,add:[228,268,6,7,277,166,247,87,248,91,253,286,289,20,0,293,312,143,48,220,184,102,121,190,192,276,195,108,42,196,303,136,291,163,294,82,52,319,70,218,142,62,180,144,231,68,306,71],adc:184,add_vertex:119,match:[],abababababab:311,dinitz:[144,268,195,261],genericcrystalofspin:50,degree_sequ:[62,210],punctuat:176,realiz:[],worddatatype_str:[311,231,150,42],is_indefinit:69,insert:[181,7,20,168,225,185,286,255,30,180,184,18,104,105,109,103,113,85,197,285,293,262,302,287,58,140,312,68,306],like:[160,6,7,84,141,128,125,253,286,293,184,29,269,205,35,276,237,41,42,285,290,163,262,54,301,287,306,59,140,311,231,319,154],success:[253,212,42,143,184,311,291,108,0,302],nullroot:101,get_part:[306,68],abaccaaba:42,primepi:56,"________________________________________________________________________________":261,is_fully_commut:287,stuffl:272,parent_nod:207,ncsf2:[272,140,201],ncsf1:[22,272,140,201],haim:[144,129,268],ribbontableaux:117,faces_of_typ:93,convex:[276,286,229,163],proper:[276,277,176,42,56,137,283,24,285,286,185,180,225,108,171,319,69,70,269],integer_vector:[130,269],tmp:[175,146],woud:195,ess:61,identity_el:289,"9511223v1":61,macdonaldpolynomials_gener:92,condens:184,antipod:[298,229,272,77,258,283,115,322,165,61,140,27,68,260],"_digraph":[319,217],happend:319,nonempti:[242,286,229,211,41,256,78,22,260,7,201,285,84,122,258,108,34,14,68,249,171],ralf:[316,78,182,289,66],cetlin:58,babababababababababababababababababababa:192,pierifactors_type_a_affin:[227,225],slight:[277,42,143,259,291,243,35],type_a_affin:227,ident:[228,160,5,162,6,7,165,81,241,84,141,169,247,171,295,269,253,286,19,272,0,99,220,184,185,30,186,190,155,193,276,41,42,117,115,288,122,291,163,262,12,214,137,305,70,59,140,61,92,198,313,287,68,306],nathann:[253,33,62,146,129,130],binary_transit:184,simplex:276,to_inversion_vector:286,dct:291,about:[],actual:[228,160,5,7,277,84,13,171,269,253,286,272,143,48,186,184,183,190,276,195,315,42,285,122,291,159,163,209,133,319,301,214,137,287,306,217,218,142,62,304,147,0,68],justin:[312,42,307],graphviz_str:163,qt_kostka:92,nonsens:142,justif:253,finitewordpath_3d_list:311,input_data:222,ander:[285,163],purbhoo:52,discard:[137,306,178,147],certainti:286,include_last:311,qvee:155,baxter:[],choosenk:[63,15],centralizer_algebra_dim:222,outward:223,svg:276,from_alternating_sign_matrix:223,wach:[68,285,272],legendr:306,num_cel:168,pictur:[],renorm:185,azzaa:42,rce:[62,0],rcf:222,initial_wher:184,unexpect:[130,184],cpi:61,keyerror:42,starting_partit:306,sage_tmp:[319,217],nauti:[253,0],brant:132,inlin:163,bug:[286,56,304,306,174,15,83,163,171,151],lynn:43,schur_to_hl:46,wise:[190,65,61,0],standard_marked_iter:180,wish:[276,186,48],wisk:185,trace_hypergraph64:146,flip:[12,7,256],rc2:[220,310],schensted_insert:7,finitewordpath_2d_str:311,abababababababababababababababababababab:5,pii:[195,212,162,306,7,286,185,262,285],dm_75_8_1:268,colum:130,domino:[281,106,212],pix:241,circul:0,finitewordpath_hexagonal_grid_iter_with_cach:311,permutationgroupel:[72,91,54,75,246,42,0,306,284,7,286,273,318,159,149,170,107,301,171,71],permutohedron:[276,286,143,285,185,147,189],pir:143,pit:61,standardtableaux_al:[7,301],probabl:[],tricki:144,semistandardtableaux_s:7,finitewordpath_dyck_iter_with_cach:311,oab:144,abbccdef:42,crystalofalcovepath:132,kl79:199,oai:144,kts15:80,shimozono02:106,partition_funct:223,composition1:140,llm1998:92,reflection_index_set:287,abadafd53587:42,hopefulli:256,rcnonsimplylacedel:[220,76],semir:269,augmentedlatticediagramfil:12,ubc:272,pi0:142,is_real_root:143,"elfstr\u00f6m":33,ababaa:42,ababac:42,ababab:[311,42],nrow:[276,0],"_repr_":[44,73,232,233,45,235,236,237,238,239,82,227,252,265,234,194,32,290,204,50,132,218],backend_ppl:24,parent_class:277,zhelobenko:228,bauer:43,integervectors_nconstraint:130,omega4:277,cookbook:171,omega1:[277,291],oa9:144,omega2:[277,291],standardpermutations_n:286,finitewordpath_cube_grid_it:311,diffusecolor:276,cartan_matrix:[155,302,143,287,6,119,167,291,243,35,69,250],nwf:56,is_disjoint:0,mccaffrei:63,node_numb:84,consider:[253,184,208],emptyseterror:[261,74,266,208,30,144,317,247,88,131],isobar:142,palindrome_prefix:42,pprint:228,return_words_iter:312,concret:[306,291,211,65,140],under:[228,312,262,160,5,6,7,165,241,306,184,247,87,310,249,14,269,43,281,286,265,280,256,307,22,23,260,48,220,101,185,30,106,258,277,40,42,253,116,283,115,285,201,122,317,49,172,128,272,55,211,0,305,58,140,61,142,143,144,147,287,68,70,225],islic:[247,253,231],left_special_factor:42,forbidden:[253,47,150,52],everi:[72,228,229,268,5,48,171,7,81,217,84,169,0,14,249,128,173,313,93,19,280,179,258,260,100,266,101,15,29,30,186,108,34,286,193,195,42,283,222,285,201,120,319,291,163,49,207,107,189,272,300,256,56,304,305,58,74,140,61,144,146,147,57,293,68,320,306],risk:[22,163],rise:[256,48,218,310,144,163,47],risc:[316,78,182,289,66],latex_line_width_scalar:[185,256],quantiz:[254,293],jack:[],bindableclass:[272,305,297,140,241],quantit:68,malvenuto:[305,198,272],school:56,"34a":56,degeneraci:65,verif:[98,260,253],induced_sub_finite_state_machin:184,shape_partit:[229,166],randpar:306,naiv:[253,272,42,218,208,147,35,171,43],decreasing_par:185,bialgebra:[283,115,140,272],direct:[],enjoi:276,street:128,coerce_h:[283,260],combinatorialmap:20,rubei:[289,78,182,66,316,35],hide:[253,154],"_test_maximal_el":225,birkhoff:[286,43],fundamentalgroupgl:313,ambientspac:[277,237,302,143,235,236,6,238,239,240,234,167,291,259,13,295,89],conduct:228,symmetr:[],subtre:[253,256,84,285,185,30,125,269],yxy2:48,dual_map:5,beck:128,symmetricfunctionalgebra_monomi:322,subword:[],affinis:291,path:[],oa_10_796:268,weightlatticer:[277,143,259,6,218,243],kirillov_reshetikhin_cryst:281,classical_ct:207,anymor:[276,286,68,184,147],rootspac:[143,155,6],precis:[228,5,7,165,11,0,170,171,260,269,253,286,254,272,256,180,2,184,102,185,30,186,218,34,37,42,285,296,163,128,58,140,61,311,313,68,306],weyl_group:[228,276,143,287,6,142,205,82],fraction_field:[309,83,142,280,77,4,180,283,253,165,218,82,92,256,128,68,12,115,272],gerbicz:171,fourier:[291,106,61,42,101],isomorph:[],setspecies_class:107,abbacabba:312,upperchristoffelword:307,degree_zero_coeffici:68,from_word:287,"4411v3":68,faces_of_color:93,qsymt:[165,272],viennot:308,partiton:209,module_list:175,abbabaabbaab:42,graphics3d:[143,276,24,40,311],describ:[228,160,293,277,81,82,84,174,306,172,0,88,260,16,269,253,93,296,178,272,256,307,22,23,27,29,176,258,276,195,184,42,115,285,163,127,130,133,55,211,311,33,58,140,62,143,144,147,222,68,216],would:[228,268,78,7,82,84,13,260,251,18,272,180,259,160,48,184,185,30,183,269,190,276,277,253,281,119,122,291,243,128,209,130,189,211,0,304,306,59,61,319],puzzlepiec:52,aabaacaabaaabaacaabaabaacaabaaabaacaabaa:307,sergei:[283,163],word_label:[90,42],subrootsystem:[143,205],asset:144,slanski:101,kinokuniya:4,"_search_rang":269,laguerr:308,stacat98:256,dobcsanyi:[137,88,125],must:[4,5,6,7,11,16,43,22,23,183,35,37,40,176,42,262,56,57,59,61,62,63,68,81,83,84,88,90,93,98,101,102,108,119,163,130,189,137,143,144,147,12,160,164,171,173,179,48,184,190,195,200,201,317,206,211,212,287,217,305,241,247,150,251,253,256,307,266,277,278,280,283,115,285,286,291,293,172,299,301,33,306,310,311,312,319],mcdht:[92,165,272],join:[77,293,80,82,184,169,247,170,269,286,272,22,148,101,29,186,35,283,285,201,317,163,297,52,189,298,212,304,306,217,218,140,147,319],multinomi:[171,286,43],norm:[276,75,280,143,291,68],get_cycl:5,spyx:0,multiplicativencsymbas:297,overrid:[286,42,304,283,291,243,48,184,82,185,30,141,11,163,190,295,269,132],finitewords_over_orderedalphabet:59,fundamentalgroupofextendedaffineweylgroup_class:313,is_smooth_prefix:42,productspecies_class:71,standard_form:229,setpartitionsprkhalf_k:169,end:[5,293,7,165,321,83,168,11,150,262,90,253,93,272,0,184,185,108,35,42,117,200,286,163,207,128,189,132,306,140,311,312,221],label_el:163,is_prolong:5,unmatched_plac:7,ancestor:[127,90],matrix_centralizer_cardinalities_length_two:222,green55:222,modular_characterist:101,algebriqu:185,mess:286,befor:[229,6,80,20,167,168,247,171,88,269,253,286,150,256,48,21,266,275,276,195,42,261,278,122,291,129,131,300,211,301,137,218,62,144,141,147],to_ambi:[143,155,295,243],extremesofpermanentssequence2:56,parallel:[37,276,195,268,80,11,286],finitewordpath_hexagonal_grid_str:311,aldor:[316,78,182,289,66],exclud:[253,256,56,304,147,163,68],environ:[93,286,321],mac1995:83,incorpor:[33,132],enter:[301,180,283,306,48,184,293,190,128,269],exclus:163,composit:[],deform:[115,218,186,61,243,68,16],output_alphabet:[190,184],over:[],orang:[143,276,306,40,52],becaus:[12,276,268,77,181,234,271,7,165,241,84,141,244,218,13,171,269,103,286,255,256,307,180,23,48,184,185,30,109,190,191,35,113,277,85,0,253,197,238,285,201,283,290,291,163,207,50,272,298,301,56,306,61,257,231,313,293,243],reorient:[319,217],restrict_part:68,london:[305,68,88,61,293],gyrat:212,a001910:56,"_forbidden_border_label":52,ima:7,to_core_tableau:180,d6xa1:160,preconstruct:184,orthonorm:[228,283],imp:20,bk_piec:52,klimyk:228,outer_shap:[180,117,106,122],reset_coeffici:319,monomial_cryst:221,object_class:75,iterate_by_length:[311,59],jrj94:163,rowland:163,plot_basi:5,alphacheck:[155,276,143,6,119,218,142,291,243,82],orthogonal_sum:160,lenth:146,set_verbos:184,is_latin_squar:0,p3_group_bitrade_gener:0,north_east_label_of_kink:52,choic:[253,93,42,276,5,306,221,218,286,61,241,22,186,63,184,180,291],integerlistslex_finit:269,robinson_schensted_invers:286,unpickl:[286,117,6,7,183,122,176,224,306],unnatur:143,hundredth:40,each:[5,7,11,22,29,30,35,40,42,262,52,55,56,57,58,59,61,62,68,69,71,74,268,78,321,84,88,90,91,93,101,102,104,106,108,109,111,113,117,122,163,127,128,131,132,137,140,248,143,144,146,154,12,160,161,125,164,165,168,169,171,173,180,48,184,185,186,190,205,195,196,197,278,201,317,207,208,211,212,217,218,220,221,222,223,224,228,229,322,241,244,247,269,253,254,272,256,307,261,21,266,276,277,0,283,285,286,296,291,293,294,300,301,303,304,305,306,308,310,311,312,313,315,318,319],infiniteseriesord:316,a2xb3:291,parent_obj:207,prohibit:253,pdflatex:127,partitionspeci:[149,318,78],gaussian_binomi:[171,43],fsmlettersymbol:184,a3xa2:160,a3xa1:160,gon:256,evid:59,goe:[276,129,272,0,307,5,306,115,285,137,184,140,311,22,193,143,171,68,130,291],newli:168,k_grassmannian_piec:52,laid:276,rank_funct:[304,286,163],got:[218,130,184],to_expr:122,ribbon_tableau:117,latex_opt:[185,207,256,184],macdonaldpolynomials_h:92,bottommost:[122,7],precaut:208,free:[],macdonaldpolynomials_q:92,macdonaldpolynomials_p:92,evil:56,standardpermutations_desc:286,nap_product_on_basi:16,affinepermutationgroupgener:287,compactif:[90,42],puzzl:[],a4xbc5:302,abstractclonabletre:[30,48,285,84],tensorproductofcryst:[275,21,254,203,26],hypermap:0,substructur:137,filter:[229,256,42,304,117,222,285,163,171,115],coxeter_numb:[232,233,234,235,236,237,238,239,101,240,291],heck:[],maximal_chain:[185,163],upper_binary_tre:[185,285],dec:42,onto:[228,276,272,160,143,259,70,6,241,185,141],semistandardtableaux_shape_weight:7,sageobject:[75,160,5,6,82,171,173,93,148,182,184,90,35,40,199,288,291,302,56,70,217,311,312,65,66,149,319],loop_wher:184,chap004:137,rang:[7,102,50,22,152,30,34,37,42,262,52,56,57,74,61,92,231,65,68,59,268,78,80,84,90,62,286,289,96,98,15,63,122,271,128,130,189,137,138,140,248,143,198,147,182,163,141,171,173,179,180,48,2,185,131,261,278,201,317,206,211,212,287,218,222,223,229,208,247,260,251,253,254,272,256,307,144,266,269,276,0,283,115,285,303,288,299,301,302,304,33,306,308,311,312,319],mathbf:[68,201,184],miroru:212,lyndonwords_nk:98,a008277:56,rank:[],restrict:[],standardpermutations_avoiding_123:286,alreadi:[253,195,268,256,280,48,7,61,208,62,30,186,146,184,287,317,87,52,291],add_horizontal_border_strip:306,deltapiec:52,primari:[128,0,222],setpartitionsak_k:169,is_debruijn_sequ:33,multiply_vari:314,qmu_sav:217,longest_common_prefix:[312,42],rewritten:[286,68,269,184,132],carrel:205,top:[],tot:56,finitewordpath_north_east:311,toi:286,too:[253,195,208,4,322,306,285,309,184,142,83,84,122,146,269,163,247,268,171,68,251],c3_control:269,tom:[228,186,287],split_transit:184,empty_speci:1,isometr:93,abbababbaababba:42,consol:144,complement_rig:220,qmu:217,tool:[],jackpolynomials_p:309,jackpolynomials_q:309,jackpolynomials_j:309,initial_tableau:[306,293],desarguesian:[195,88],pancak:56,completedyckwords_al:256,expr:[117,122],aztec:212,weight_lattic:[6,101,250,254,143,259,264,21,106,108,191,275,276,277,203,243,47,132,218,142,220,221,313,11],boil:286,arnoux:[5,93,42],pauvr:129,hypothes:251,from_vector_not:295,from_desc:22,fashion:253,lbt:[84,285],empty_copi:184,arm_cel:306,ram:[277,186,218,61,293],wiesenth:163,ostrik:306,rai:[276,80],raw:[312,285],q_multinomi:43,petersen:[137,300],ldot:5,spade:253,cells_of_head:180,in_order_travers:285,setpartitionsprk:[19,169],deg_rev_lex_less:42,viktor:306,is_supersolv:29,thorough:140,lowermechanicalword:[42,307],accepting_dist:184,add_to_preambl:93,thoma:[253,283,306,165,163,35,68],thoroughli:41,derec:[],"2006j":306,inner_product:[228,295,259],though:[253,133,160,283,306,261,7,26,101,146,129],list_parking_funct:256,integervectors_nkconstraint:130,root_spac:[155,276,143,6,205,207,69],coin:[58,310,0,56],jean:[286,256,4,5,148,285,283,163,68],richard:[211,256,258,283,29,163],necklaces_evalu:187,covariant_functorial_construct:201,restrict_degre:68,max_width:168,baaabaabaababaaabaababaaabaababaaababaaa:5,declar:[141,0,241],lengths_lp:42,kr_type_c:106,finitejoinsemilattice_with_categori:[29,163],kr_type_a:106,radix:102,set_random_se:163,omega_involut:[272,280,258,140,49,14,68,249],random:[59,5,7,208,169,170,171,90,253,93,19,178,0,256,96,22,98,184,29,30,42,285,120,20,126,163,128,47,130,189,299,301,137,287,58,74,308,217,62,307,319,151,306],sage:[],radiu:184,pkg:137,radic:[247,253,218,208],block_design_proc:125,online_list:56,absolut:[56,5,184,180,190,171],dm_35_6_1:268,rsw:61,mh38:307,florent:[229,40,256,84,283,306,74,48,2,285,30,171,128,151,16],unary_weight:190,configut:[76,264,310],starting_weight:[11,132],rsr:311,integration_const:289,stephani:272,lexicograoh:282,axiom:[127,132],hughesplan:[88,17],congruenc:[285,286,300,268],shimozono:[298,142,77,180,291,70,218,241,106,313,11,310,207,68,306,225],label1:52,label2:52,macxi:92,congruent:[268,285,81,266,65,190],abaabacabaabaabacabaababaabacabaabaabaca:307,report:[42,256,137,83,143,291,302],reconstruct:[13,291,42],toolbox:253,greene_shap:[286,163],acm:42,integervector:[253,158,22,218,317,47,130,269],"public":[83,211,42,283,309,61,92],twice:[195,286,208,106,225,163,247,128],contrast:[190,68,184],is_cube_fre:42,callabledict:303,dinversion_pair:128,class_card:222,with_apply_multi_module_morph:243,full:[228,7,82,170,269,43,281,0,256,180,26,184,29,21,276,42,253,285,203,291,163,295,132,212,56,287,306,310,153],type_model:223,bij_type_a2_du:181,iglesia:283,to_coroot_space_morph:155,tensor:[],iiro:266,isotyp:[161,149,71,253,66],databas:[],totallyorderedfiniteset:176,number_of_matric:222,is_compl:29,discoveri:253,hananibibd:144,mul:[247,61,42],approach:[253,286,283,306,184,208,317,65,147,128,68],transducergener:190,weak:[],nu0:220,zero_one_sequ:306,southeast:[180,306,211,52],coinvari:[115,256],bose:[247,266],eillan53:148,icgsa:125,from_dual_transl:241,first_term:[311,56],default_weight:225,fault:40,alternating_sign_matrix:212,ambient_spac:[228,234,235,236,6,238,239,240,167,13,89,254,143,259,21,205,276,277,237,291,295,302,218,142,313],rfind:[150,42],facet:[143,185,276,52,163],"_dense_free_modul":141,jstor:43,orth:75,apply_morph:312,llt_gener:4,s7r:5,projective_plan:[195,137,57,146,88,17],monograph:[283,130],suggest:[253,111,88,291],kwd:[7,166,141,171,90,289,178,22,24,26,21,266,269,42,117,278,119,288,203,291,163,297,54,137,311,144,66],st94:283,category_typ:[143,277,201],multiedg:[304,200,163],shellabl:163,bandlow:[301,7,201,256,272],dougla:[266,173,261],trust:286,reversed_word_iter:271,rumsei:212,oa_15_896:[144,268],been:[312,268,5,6,7,208,84,168,218,13,171,88,173,253,286,272,256,307,143,148,184,185,269,310,35,276,195,285,303,122,291,163,262,129,52,211,301,56,137,57,306,304,140,61,142,180,144,141,147,259,293,68],accumul:[269,56],mult:[286,61],is_non_nest:308,krtableauxdtwistedspin:281,dual_act:241,xxx:[247,81,42],format_transition_label:184,symmetricgroupbruhatintervalposet:189,"catch":[13,143],abbbbbbbbbbabbbbbbbbbaabbbbbbbbbabbbbbbb:307,bf01390031:199,indeterminat:43,eltc:143,integrable_represent:101,timeit:[141,286,208,132],"math\u00e9matiqu":[253,42],weylcharact:[228,250,101,160],cdcd:184,su2009:42,counterclockwis:[180,212],weightedintegervector:[253,114,158],lesser:7,fubini:242,coerce_p:[283,260],difference_set:247,xyxsxssysxyxsxssxyssxyxsxssxyssxyssysxi:5,designhandbook:[144,268,195,261],sta11:42,"__7__":285,pyramid:[256,56],generalizedyoungwal:[275,157,21,263,221,108],knutson_tao_puzzl:52,nz97:[254,26],matrix_spac:212,first_positive_coroot:276,conjugacy_class_s:[306,68],exterior:[228,6,160],coeff_el:[162,140],anatoli:306,from_area_sequ:256,wordopt:[312,60,42],scalar_hl:[83,68,280],bacca:312,"0x7f26f5e3fd70":13,gregg:[35,319,217,120,279],filippo:286,complex:[228,5,6,165,269,43,253,286,293,22,24,190,205,195,42,303,163,127,301,306,143,147],addabl:[68,7,106,301],a2xb2:[6,291,302],complet:[],is_empti:[42,312,5,285,306,48,30,231,271],weyldim:[234,6],coxeter_group:[170,287,82],lower_covers_iter:[304,163],umbral_oper:154,standardtableautuples_level_s:301,pick:[62,30,195,59,146],intermediate_shap:[180,106],format_output:184,abbabaab:[311,312,231,36,42],constaint:296,latex_vspac:185,unimodular:[5,58,93],finitewordpath_triangle_grid_tupl:311,redefin:[253,304,283,165,170,47],narrow:128,k_k_schur_non_commutative_vari:298,increasing_children:185,greatest:[29,306,309],everyth:[253,93,272,276,299,278,195,80,184,140,30,266,291,247,68],cmunu:92,"137th":65,abcabcabcabcaabacabcababcacbabacacabcaccbcac:311,finitewordpath_all_callable_with_cach:311,addend:[34,61],km94:296,setpartitionsrk_k:169,beta_numb:306,partial_sum:[22,312],garnir:[306,293],pyrxp:125,delta_piec:52,expos:286,elm:[29,198,115,163],has_pattern:[253,286],subcryst:[275,254,221,10,108,9,132],conjug:[228,5,293,7,165,241,0,14,249,43,42,22,205,280,283,201,122,163,49,130,272,298,258,211,301,306,308,140,142,92,143,231,68],"_min_length":[130,269],projective_plane_to_oa:88,els:[7,101,247,150,320,173,253,272,307,22,182,184,269,192,276,40,285,291,207,262,133,56,33,70,74,140,61,311,144,231,147,68,306],expon:[272,42,56,307,322,218,92,186,184,269],transit:[229,125,7,241,83,247,260,90,253,286,42,184,190,280,285,290,163,127,189,298,300,304,218,92,198,68],elt:[76,241,264,260,281,286,178,143,309,26,27,21,186,106,115,203,297,55,305,58,140,310,220,317,68,153],gave:[22,140,173],"th\u00e9or\u00e8m":42,r_n:56,fixed_point:[286,47,42,0,5,311,192],plancherel:306,subquoti:317,similarity_class_typ:222,prime_pow:[247,80],"_indic":214,apart:305,jyt:[272,42],s00209:106,balancedlabelledorderedtre:30,arbitrari:[77,5,7,321,43,93,256,184,185,21,205,40,261,283,119,122,293,49,301,306,142,311,286,69],boundary_condit:223,aaabbbaabb:311,pochhamm:306,fsmwordsymbol:184,b_10_59:88,lazypowerseri:[289,78],singl:[160,7,167,11,269,281,93,254,178,272,143,4,48,220,184,186,106,35,276,0,253,283,285,286,122,296,203,163,127,52,301,306,309,218,310,92,144,311,147,66,317],contradict:[190,140,269],el2:185,a000015:56,el1:185,cyclic_permut:171,ysxyssxyxsxssysxyssxyss:5,acad:[92,42],nilpot:[222,106,100,43],partitionalgebraelement_sk:169,acao:90,okounkovvershik2:286,stopiter:[253,133,40,0,42,308,184],excerpt:256,wi72:[247,208],donald:[],has_right_conjug:5,lambdacheck:[155,143,82,243,295,241],indirect:[228,77,234,80,309,83,214,10,171,286,256,48,266,184,104,183,106,280,285,271,297,189,298,300,301,305,306,140,144,313,287,68],guess:[253,93,137,57,278,140,311,266,231,125,171],young_subgroup:[306,293],chaudhuri:80,sink_sourc:[319,217],ici:42,cooper:140,icm:[283,142],t10:52,t12:82,root_system:[155,73,232,228,45,235,236,6,238,239,240,241,167,141,225,13,170,227,89,252,143,259,152,160,101,44,234,106,32,205,275,276,277,237,194,119,233,204,243,295,82,132,302,70,218,142,313,69,24,291],xyxxyxyyi:42,core:[],generating_seri:[72,91,196,284,230,246,78,161,74,318,273,225,159,66,149,294,107,1,71],algebrael:289,delecroix:[93,137,138,15,63,176,88],fixpoint:308,"0x7f8fbe333848":[],subspac:[298,272,77,5,98,141,283,295,88],combinatorial_map:20,kirillovreshetikhin:[281,265,220,218,310,21,263,106,203,11,9,127,153,132],quaternion:228,hsv:[5,93,42],finitewordpath_all_it:311,tamari_succ:285,chapter:[253,277,211,272,42,143,283,309,308,286,184,208,185,247,101,163,9,262,291],patera:[101,160],alexand:[244,56],t1c:285,rho_prim:218,macdonald_famili:92,surround:311,isotropi:160,best_column:133,produc:[228,160,208,84,167,101,13,89,173,253,178,22,23,184,21,186,90,205,315,261,291,163,127,302,287,308,218,62,144,313,147,153],parkingfunctions_al:128,duke:[195,254,42,179,26,52],left_key_as_permut:212,multipartit:272,encod:[160,253,276,212,256,30,74,48,119,61,311,84,146,101,163,190,35,319,307],ppl:276,bielefeld:305,abel:[144,268,195,251],storag:90,q_to_qcheck:218,tikz_scal:[185,256],standardtableautuples_level:301,a1xc2:[228,160],transform:[185,195,184,40,272,42,276,283,308,165,61,92,84,266,265,11,163,68,285],"class":[],gif:311,anderson:266,coroot:[228,160,234,6,241,167,11,13,89,254,143,259,101,108,155,276,277,119,296,291,243,127,295,82,218,142,221,313,319],number_of_initial_ris:256,head:[180,306,154],nrrestrictedpartit:306,finitewordpath_cube_grid:311,altogeth:259,epsilon:[275,281,265,254,184,21,221,218,26,61,223,220,106,203,11,108,9,191,50,290,132],marked_given_unmarked_and_weight_iter:180,heap:285,mark94:286,from_beta_numb:306,null_coroot:[143,259,277,218],parking_funct:128,finitewordpath_dyck_it:311,cyclicpermutationsofpartition_partit:286,erdo:62,cabcab:42,fundament:[],weaktableau_bound:180,orthotriang:188,is_infinit:[22,306,211],number_of_tupl:171,trie:[90,42],bibd_from_difference_famili:[247,266],cyclotom:[301,140,144,293,247,170,68,43],arbitrarili:[195,296,301,184,307],sumov:222,diamond:[253,212],specieswrapp:149,nnu:151,triv:75,check:[5,7,11,13,14,43,22,29,30,35,42,262,52,55,57,58,59,61,62,63,65,68,69,225,268,78,80,82,84,87,88,89,281,286,289,98,99,174,15,106,117,119,120,122,159,163,128,129,130,189,132,137,140,142,143,198,146,151,155,125,167,141,169,171,173,180,48,2,184,185,187,131,190,205,193,195,261,278,201,317,206,207,211,287,218,220,33,223,228,229,208,242,247,249,251,253,254,272,256,307,258,259,260,144,21,266,269,277,0,283,115,285,136,296,291,293,172,298,299,301,304,305,306,322,310,319,243],assembl:78,lplu:78,canonical_inner_product:259,extendedaffineweylgroupw0pel:241,algebra_functor:142,tit:241,luoto:[162,272],when:[5,6,7,11,16,43,22,27,34,40,176,42,262,52,56,57,59,61,92,231,65,68,69,71,76,77,78,90,91,281,93,18,104,63,121,119,122,163,127,130,131,132,137,140,142,257,198,146,151,160,164,171,173,180,184,185,190,193,195,196,317,211,212,220,223,241,247,150,260,269,253,254,272,256,307,261,144,21,266,62,276,283,285,286,288,112,290,291,293,294,298,301,303,304,305,306,310,311,312,316],left_special_factors_iter:42,smilli:42,k_max:[251,131],inpuet:173,dm_45_7_1:268,lambda_chain:132,multichoosenk:96,hundr:[253,171],pbd_4_7_from_i:80,node:[],test_rsw:61,simplify_r:253,is_order_filt:163,north_west_label:52,arithmetic_product:[68,78],eigenvalu:[228,160,5,61,82,92,218,142,69],by_combinator:319,consid:[229,268,76,160,264,6,7,165,208,84,247,225,306,13,171,88,16,269,281,286,272,256,21,22,259,100,26,184,185,30,266,176,190,35,111,277,195,115,40,42,253,283,278,285,203,291,163,127,262,133,319,211,301,56,137,287,70,59,308,217,218,311,143,220,146,307,147,66,312,68,216],xavier:[311,163,43],is_block_design:137,uniformli:[253,0,276,287,58,59,7,221],ydelta:142,scharf:[283,68],dynkin_diagram_automorph:106,increasing_tree_shap:286,number_of_box:58,inversion_numb:[7,212],dict_factor_it:248,fibonacci_xrang:171,two_n:129,valeri:5,lubovski:[122,221,132],setpartitionssk:[19,169],livernet:16,get_branching_rul:160,rob:163,llt:[],although:[253,272,160,137,283,236,140,144],signific:[190,253,163,184,132],from_ambient_cryst:106,a015523:56,subobject:[298,100],dual_str:[23,291],to_standard_tableau:[180,256],row:[12,268,5,7,80,81,166,83,306,168,169,0,171,281,286,265,272,256,22,186,21,183,106,108,287,205,195,40,280,261,117,119,201,122,296,321,293,207,262,47,130,131,301,298,133,211,212,56,137,305,58,253,61,310,180,144,220,315,57,223,224,319,69,216,153,291],ck2008:256,melou:164,inject_shorthand:[283,47,165],demey:171,multiplicativebasesongrouplikeel:140,readabl:[253,184,276],brlek:[42,307],is_join_semilattic:[304,163],quasi:[],latticeposetel:[29,39],multilinear:141,orderedtrees_al:30,sourc:[319,160,283,200,7,217,20,198,187,163,68,125],affinefactor:[263,112],triangul:[217,256],standardskewtableaux:[224,122],major_index:[286,42,256,22,7,20],cyan:[306,40],run_test:209,upper_monomi:269,finite_projective_plan:88,"0x7f2719212aa0":239,level:[],set_index:21,valentin:308,hous:78,brother:[185,30,285],partition_:[253,306],e_ci:78,quick:283,get_print_styl:68,abstracttre:[185,84],slower:[257,163,132],dushnik:163,weaktableau_abstract:180,cover_rel:[286,212,143,6,285,29,304,198,163,189],rho_0:277,is_chain:[304,306,163],equivari:[228,142,52,218,82],port:[253,114,269],taup:143,deadli:268,homomorph:[272,160,306,285,140,241,68],meetsemilatticeel:[29,39],affine_grad:21,r1l0:[285,256],rctokrtbijectiontypea2odd:85,morgan:88,coerce_map_from:[140,61],learn:[37,286],find_q_x:[195,251],compositionspeciesstructur:91,dot_reduc:228,preorder:300,component_typ:302,plotopt:[143,276],word_iter_with_cach:231,ht_two_step_piec:52,from_pm_diagram_to_highest_weight_vector:106,crystalofprojectedlevelzerolspath:11,overriden:291,weird:184,automaton:[],x3d_str:276,semant:[12,286,272,78,165,218,20,141,61,171],enumeratedset:[127,171,158,147],tweak:[5,6],retract_direct_product:[286,61],permutationsnk:[286,177],subcategori:[141,163],"1st":[84,65],abbab:[42,5,311,312,150,90],abbaa:311,vivid:186,wordgener:307,memori:[37,253,22,23,306,74,290,163,62,257,146,269,147,222,127,173],pred:[143,276],hr2005:186,prec:[5,171,106],eklp92:212,affinepermutationgroup:287,ifilt:253,partition_diagram:186,qt_catalan_numb:43,prev:[286,154],reorder:[281,195,272,48,30,108,35,130],andr:283,"fr\u00e9d\u00e9ric":[84,16],doctorat:311,dual_basi:[68,280,283,115,27,297],bvr82:144,bold:201,basic_untwist:[13,167,89,291,32],a008683:56,"0x7f8fbe3c1938":[],kleen:184,jack1970:309,pr_invers:265,crystalofword:[281,296,21],representation_matrix:75,permgroup:170,purpos:[276,54,40,302,269,78,143,160,7,303,184,82,84,225,224,208,20,90],pointwis:[],stream:[],is_parent_of:[29,163],scrimshaw:[229,76,181,7,242,168,10,264,306,281,286,296,178,255,256,21,22,99,27,103,104,105,108,109,113,85,197,115,119,185,122,292,207,262,297,130,132,55,211,212,305,58,140,310,220,69,70,153],vrepresent:24,kmonomi:[283,77],from_labelling_and_area_sequ:128,cp12:285,critic:[137,307,269,42,0],alcove_walk:[143,276],bbbbba:307,unfortun:[253,68,140],hydrogen:253,infiniteword_iter_with_cach:[312,231],kr_type_a2el:106,alwai:[164,225,247,90,253,254,42,256,21,180,48,184,102,185,30,266,269,283,34,280,7,285,119,36,291,163,132,298,211,302,306,74,61,62,22,144,221,313,314,68],differenti:[253,306,42],content_comp:162,has_final_st:184,cur_dim:[113,85,255,181,197,103,104,105,109],abaab:[312,42],left_kei:212,internal_product_by_coercion:201,fourth:[42,56],bibd_from_pbd:266,"__mul__":229,check_epsilon_transit:184,birthdai:92,horizon:223,llt_spin:4,clone:[84,30,48,285,78],"_t_y":218,levi:[228,160],"4th":[128,171],change_perm:54,clonabl:[84,317],practic:[253,277,283,6,218,82,269,127,189],hst09:291,deltacheck:[259,218,142],to_nsym:305,predic:[],df_q_6_1:247,aaababbb:311,primori:56,combin:[],dual_latex:291,cur_partit:[113,109],hopfalgebra:283,dm_44_6_1:268,totallyorderfiniteset:176,quivermutationtype_irreduc:35,aaaabbc:5,rbibd_120_8_1:268,cdeab:5,ababababab:311,rctokrtbijectiontypea:[103,113,105,85,109],rctokrtbijectiontypec:[103,104,255,181],rctokrtbijectiontypeb:[104,10],mainli:[83,160,253,7,140,208,92,122,35],"_rec":256,partitionalgebraelement_gener:169,torkildsen:35,wallach:228,sylvest:[185,286,285,81],rootedtrees_all_with_categori:48,"static":[256,22,119,20,185,180,144,189],"__contain__":33,hurlbert:129,bounc:256,q_bernoulli:179,outside_corn:[306,293],"___3____":84,bernat:5,abaabbba:42,fpolynomi:163,compositions_al:22,quickref:[],confingur:220,enabl:[37,253,93,286],riggedpartitiontypeb:168,term:[155,77,160,165,82,141,11,0,171,150,260,320,269,253,286,289,272,256,307,180,23,78,27,185,21,106,101,184,280,283,112,127,130,132,298,211,56,140,218,142,92,221,65,68],polish:276,name:[229,76,160,5,48,163,7,80,82,83,214,167,141,218,169,0,14,310,249,16,173,175,253,93,289,280,256,217,22,259,260,78,100,184,130,106,188,269,176,205,35,111,277,42,264,283,117,115,285,201,165,122,291,125,304,20,52,272,258,211,301,137,58,59,140,61,142,143,220,146,147,171,149,224,293,68,225,306,180,154],transitiveiealgrad:147,realist:184,dabc:[148,42],permutohedron_meet:286,col_perm:0,"000000cm":93,csp:172,partitionsinbox_with_categori:306,temperlei:186,return_matrix:160,clusterquiv:[319,217,120],"0109092v1":211,ababaaababaaabaabaababaaababaaabaabaabab:5,verify_represent:75,spinor:[281,220,55,160],individu:[55,301,56,283,306,293,101,66,269],standardtableau:[47,7,301],functorialcompositionspecies_class:294,hlp3:[283,77],begun:[253,7],abcdefghijklmnopqrstuvwxyz:290,characteristic_quasisymmetric_funct:128,ejc:184,subplan:[137,195,268],v_complement:29,kent:222,kashiwaranakashimatableaux:[281,106,123],factori:[286,212,301,78,48,306,56,7,61,185,30,122,313,293,84,171,68,285,43],paperfold:190,dump_to_tmpfil:125,kirillovreshetikhincryst:[265,106,153,310],sum_of_weighted_row_length:108,hlpk:77,gap3:170,gap4:293,theori:[],promotion_on_highest_weight_vector:106,goldschmidt:61,replace_paren:256,prescrib:315,oa_16_208:[144,268],state1:184,refus:257,finitewordpath_cube_grid_str:311,turn:[253,195,75,212,256,305,99,184,20,144,163,127,171],conversion_funct:174,place:[181,5,6,7,84,0,286,255,256,180,160,266,184,103,186,109,276,85,42,197,278,163,207,301,137,306,74,308,140,68],make_nod:285,sho:308,parts_in:306,imposs:[253,59,285],origin:[268,76,5,7,80,241,167,11,13,171,89,173,253,93,254,256,22,184,269,40,0,264,285,125,129,130,133,55,301,138,58,140,310,311,198,146,306],suspend:253,partition_at_vertex:282,abcdedededefab:311,dumb:206,arrai:[],a1xc3:[101,160],riggedconfigurationel:[220,76],predefin:[223,184,160],given:[12,5,92,6,7,11,13,14,16,43,297,20,22,26,27,29,30,183,32,34,35,40,176,42,49,50,52,57,70,59,61,62,141,65,68,69,225,74,75,76,77,78,321,82,88,89,281,93,0,102,18,268,106,108,117,119,122,265,163,127,128,130,189,132,137,140,248,143,144,147,151,153,155,160,125,166,167,168,169,170,171,178,180,48,322,184,185,186,190,191,193,195,261,199,200,201,317,205,207,208,211,212,287,216,217,218,220,222,223,224,228,229,262,235,236,240,241,247,150,249,269,253,254,272,256,307,258,198,264,21,275,276,277,280,283,115,285,286,296,290,291,293,295,300,301,302,304,33,306,308,309,310,311,312,319,320,243],ian:[283,266,268,42],integervectors_nk:130,jacobsth:56,unipot:4,qqx:68,"_quiver":319,necessarili:[37,253,296,269,276,143,259,140,184,62,144,65,283,247,68,151,153,43],circl:[93,56,143,58,286,184,163,128,269],white:[172,150,52,0],instanc:[312,160,5,322,7,20,83,84,141,87,150,249,14,185,286,265,0,307,143,260,4,48,266,184,52,29,30,183,106,188,309,42,253,283,278,285,296,290,163,49,295,130,258,212,137,33,306,59,308,140,61,62,257,146,147,171,68,154],t32:30,finitewordpath_3d_tupl:311,pronic:56,copi:[],braun:205,alan:[195,199],g2xf4:160,enclos:154,babaddefadabcadefaadfafabacdefa:311,bibbiena:42,primary_dinversion_pair:128,serv:[256,280,285,48,184,30,225,68,272],wide:253,only_accept:184,nathan:285,standard_number_of_desc:7,left_border_symmetri:[285,256],sblw33:98,rctokrtbijectiontypea2even:[197,255],balanc:[],lookahead:269,posit:[5,6,7,11,14,22,26,35,40,176,42,46,49,262,52,56,58,59,92,68,69,75,77,78,83,93,0,101,102,18,106,108,114,122,243,128,130,189,132,208,137,140,143,198,147,151,155,162,164,166,168,169,170,171,178,180,184,186,131,190,205,278,201,317,206,207,297,211,287,217,221,222,228,235,236,241,247,150,249,269,253,112,272,256,307,258,260,21,276,277,280,283,285,286,288,296,291,293,282,298,300,301,303,306,310,312,319],setspeciesstructur:107,restriction_shap:[122,7],seri:[],pre:[],abababab:311,standardribbonshapedtableaux_shap:224,is_on:[287,218],polyhedra_qq_ppl:24,pri:222,ani:[12,6,7,11,13,14,22,26,29,30,39,40,176,42,49,262,52,56,57,70,74,61,231,65,68,69,72,75,84,88,93,289,0,100,101,18,106,108,117,122,163,127,129,130,189,133,137,140,143,198,146,155,160,243,165,268,171,180,48,184,185,186,131,190,195,261,278,201,203,206,207,208,287,217,218,220,222,223,228,229,322,241,247,150,249,269,253,254,272,256,307,258,260,144,21,266,276,277,280,283,285,286,296,290,291,293,298,299,301,303,304,305,306,308,311,317,319],subroutin:276,a1xa5:228,a1xa1:[291,119,160],a1xa2:[302,160],prr:143,nakajimaamonomi:221,contribut:[83,256,84,283,309,92,30,291,319,52],bitwis:184,delete_vertex:291,techniqu:[253,268,269,222],schubert_polynomi:314,moreov:[184,256,22,306,285,101,84,11,190,258,171,68,189],finiteword_char:[231,271],nonparabolic_positive_root:143,kbounded_halllittlewoodp:77,ideal:[],iveson:7,mot:[311,285,42],pre_lie_product:16,orderedtre:[30,48,84],sure:[169,276,195,42,78,141,305,163,7,122,184,217,283,144,187,11,147,98,220,269,266],fct:[304,70],shifted_shuffl:[286,42],integervectorsmodpermutationgroup_with_constraint:317,multipli:[228,268,160,7,140,141,171,269,91,286,272,184,283,294,241,298,301,217,61,248,92,144,314,319,82,71],sagemath:[228,229,160,7,171,286,289,256,307,184,187,176,42,115,119,46,291,177,211,137,138,306,310,311,63,147,68,69,153],clearer:[306,293],axi:[311,256,42,291],leroi:42,pr3:169,micro:141,retract_plain:[286,61],final_compon:184,fcn:163,"_test_associ":[83,4,258,322,309,92,188,49,14,249],latex:[],correctli:[299,56,143,305,306,285,201,184,15,30,231,68,180],rotate_180:7,module_morph:[283,61],quantiti:253,robinson_schensted_knuth_invers:262,babba:5,infiniteword_it:231,runtim:[286,61],finitelatticeposet:29,coxeter_el:291,test_uni_join:[286,285],slope:[256,307,22,306,164,269],sfa_st:283,dks3:[283,77,298],t0check_on_basi:218,drawzero:93,ss1:130,is_zero_polynomi:184,ss2:130,permiss:133,hack:[13,283,68],c_vector:319,straighten_word:82,from_lehmer_cod:[287,286],explicitli:[165,82,218,13,14,310,249,90,253,272,258,260,276,195,283,285,201,290,74,61,142,220,147,68,69],infinitycrystalofnonsimplylacedrc:76,entries_by_cont:[180,122],combinations_mset:15,tensorproductofcrystalswithgener:21,analyt:[228,253],analys:5,cartesian_project:141,latex_prefix:141,silliman:65,dekker:160,sst:[122,7],complete_return_words_iter:312,from_stat:184,sss:311,ssr:311,tailor:[272,150,140,61,78],takayama:283,insomorph:137,reveal:280,js2010:106,dramat:37,strong_down_list:99,kr_type_vertical_with_categori:106,pendant:184,number_comput:182,latex_diagram_str:[306,211,293],n16:256,to_pair_of_twin_binary_tre:18,stanlei:[283,286,211,256,77,258,260,7,165,29,198,225,163,14,68,249],index_of_object:276,coeff_recur:319,sadawa:33,doraniv1996:260,kr_type_a2_with_categori:106,biprim:56,lnc:[283,307],athanasiadi:143,detect:[],charat:176,cst10:286,review:[185,190],from_dual_classical_weyl:241,freder:[185,30,43],c_graph:304,a082411:56,latt:253,comp:[212,42,22,98,166,242,187,293,297,130],flow:[223,130,163],cycl:[],comm:305,bitset:146,comb:[162,63],come:[268,162,6,168,225,247,253,286,293,187,184,30,106,276,195,0,291,163,127,306,140,218,310,220,222,68],wanless:268,recoils_fin:286,combinations_setk:15,region:[311,306,40,256,142],transeq:180,darij:[286,272,22,285,7,140,185,122,163,68],contract:163,b_1_10:88,quantumino:40,latex_larg:108,krtab:281,length_bord:42,rescal:[276,184],pow:[298,297,115],ti_inverse_on_basi:[142,82],inspir:[229,42,22,283,184,242],period:[276,256,42,56,5,307,218,184,312,65,192],pop:[57,269,84],draw_degener:276,pon:[185,286,285,225],integervectors_nnondesc:130,colon:[228,160],djm99:293,nicola:[253,114,21,5,283,119,218,241,22,291,205,68,69,132],analiz:7,poli:[68,154],"5191v3":272,opposition_automorph:291,amer:[228,286,115,205,77,160,306,163,165,218,241,221,225,108,222,127,142,307,296,132],zimmermann:253,coupl:[253,256,42,5,62,291,163,190,68],howard:212,aberr:253,ivert:184,ker:306,highestweighttensorkrt:153,pend:68,kleene_closur:184,rapidli:253,valueerror:[7,11,43,22,24,29,30,40,42,143,262,56,74,61,231,65,63,68,59,77,78,80,84,88,90,286,98,99,106,176,114,119,243,128,189,137,140,142,257,144,155,163,164,171,173,178,179,180,48,2,184,185,186,190,205,261,201,206,211,212,287,217,228,308,237,150,269,112,272,256,307,198,21,277,283,285,303,291,293,298,299,301,304,306,322,319],ht2step:52,permutations_setk:286,andrew:[41,78,306,7,321,293,171,301],"_cache__representation_matrix":75,permuted_fil:12,finitewordpath_hexagonal_grid_it:311,closed_interv:[304,163],"__eq__":[59,163],baab:42,hasattr:[304,303,141,75],"case":[5,6,7,11,13,43,20,22,30,35,37,40,42,50,56,74,61,92,65,68,77,81,82,84,88,281,303,98,101,15,104,106,176,120,122,163,128,130,132,137,143,144,146,147,160,243,164,141,171,173,180,184,190,191,195,261,201,317,205,207,297,211,217,218,220,228,241,244,269,253,272,256,21,266,62,276,277,0,283,285,286,291,293,295,298,301,305,306,311,313,319],grassmanian:287,knutson:[],rootsystem:[228,155,234,235,236,6,238,239,240,241,11,250,281,254,143,259,101,21,108,205,275,276,277,237,264,119,203,291,163,207,295,47,132,302,191,218,142,220,221,313,243,225],booleanlattic:[29,304,193,189,163],cast:298,kostka_numb:7,zorder:276,rctokrtbijectionabstract:[113,105,10],varepsilon_1:106,branching_rule_from_plethysm:160,swapincreasingoper:288,mark_special_nod:291,internal_product_on_basis_by_bracket:140,unsatisfactori:68,good:[37,253,88,20,272,42,276,283,48,218,142,62,311,146,293,317,35,111,269],iswitch:286,llm01:7,extendedaffineweylgroupw0pv:241,exponentialgeneratingseri:78,reading_word_permut:[286,7],a000312:56,tamariintervalposets_all_with_categori:185,test_genfun:285,author:[],alphabet:[],fermionic_formula:310,alkan:253,sum_speci:196,dm_21_6_1:268,html:[228,286,289,268,42,160,5,182,306,78,7,163,46,144,222,66,316,171,88,173,17],neilsloan:81,a002275:56,reverse_bump:7,realizations_of:201,nearfield:88,"0407227v1":260,aaaaaaa:307,to_composit:[242,315],nest:[115,308,301,307],"250000cm":93,permutationinvers:286,driven:125,right_key_tableau:7,circle_s:143,nsym:[140,61,201],destandard:286,td_4_10:144,"04883abcccabba":42,facad:[39,176,143,6,7,29,304,198,147,163,189,212],remain:[160,243,7,321,20,88,269,253,272,256,144,190,42,119,291,293,128,212,306,140,163,198],justifi:[253,306,130],matrix_similarity_class:222,reverse_factor:220,without:[228,268,12,243,7,208,171,260,173,281,286,289,0,184,185,21,269,108,35,276,40,42,253,283,285,201,163,206,127,130,56,304,217,311,312,220,63,147],hassediagram:304,model:[],linearextens:198,a007318:56,graymat:171,standardpermutations_n_with_categori:286,dihedr:[143,253,306,212,276],tip:[185,276,269],lw12:165,add_t_piec:52,cover_label:163,from_monotone_triangl:212,miscellan:[],hint:[253,276],it2:319,symmetricfunctionsbas:68,except:[228,76,160,5,6,11,171,310,90,281,93,0,22,259,78,220,184,185,266,106,269,35,195,42,253,285,286,120,291,292,262,282,133,319,306,217,218,142,62,143,144,221,68,225],bloc:130,quivermutationtypefactori:35,pthpower:65,check_assert:0,hooklengthformula:[306,7],kirkman:[171,80],delsart:43,affinecrystalfromclassicalel:[265,106],is_modular_el:29,e8_3d:276,defaut:90,x_i:78,color:[276,93,40,256,42,5,306,163,48,137,184,185,30,198,311,291,108,143,223,127,52],saniti:[117,256,42],a079923:56,a079922:56,whitespac:[184,108],khovanov:293,snorm:75,mpmath:171,lps_length:42,build_graph:[197,104,113,220,109],s_theorem:163,symmetricfunctionalgebra_pow:258,left_action_product:[257,286,61],"_normal":309,truncate_length:60,aaaaaaaaaaaaaa:42,disjoint_union_enumerated_set:[185,114,48,7,166,18,30,191,285],a000330:56,reduced_word:[286,143,287,218,142,313,225,205,171,82,262],intact:184,factorized_permu:180,prom_inv:106,slice:[276,231,268,56],droubai:42,frees:304,legal:[52,108],moor:[7,184,42],finiteword_str:[231,42],dlx_solver:[183,40],qdm_54_7_1_1_8:268,base_r:[228,4,234,235,6,238,165,240,82,83,167,141,13,170,89,286,272,143,259,24,186,155,277,237,283,115,201,239,291,243,295,298,302,309,61,92,66,68],complic:[253,5,201,218,62,171,43],bruhat_l:241,evenly_distributed_set:208,quit:[253,276],bruhat_poset:[47,163],garbag:[286,140,189,163],inspect:56,combinatorialspeci:[161,149,253,66],yangbaxtergraph:288,lyndon_word:98,bounce_path:256,group_gener:[313,241],immut:[253,93,0,12,304,276,285,30,21,84,171],cacbb:42,elm_lab:163,gregori:[185,285],spin_rec:117,anti_restrict:7,errata:68,pw0_to_wf_func:241,stand:[300,211,272,280,22,306,7,140,61,258,168,49,14,68,249],apply_simple_reflect:[205,287,82,241],valuat:307,find_brouwer_van_rees_with_one_truncated_column:[268,251],routin:[117,184],finitewordpath_dyck_callable_with_cach:311,fouss:253,lastli:[171,106],f_str:281,infinitycrystalaspolyhedralr:26,generalized_pochhammer_symbol:306,"60j10":0,reli:[286,78,285,236,7,61,30,122,269],descents_composition_list:286,abcccabba04883:42,vallei:256,strict:[254,212,143,283,58,115,7,26,83,180,229,163,205,260,285,153,301],interfac:[205,276,0,253],chain_polynomi:[300,189,163],strong:[],wordoftuples_to_tupleofword:184,strictli:[12,5,7,166,225,14,260,253,286,272,256,258,249,185,34,42,115,285,163,302,58,61,62,143,68,306,180],dm_33_6_1:268,apply_permut:229,morrison:222,tupe:99,sx1:241,eg1987:262,polytop:[],tupl:[],regard:[228,286,272,160,306,115,48,61,142,185,186,106,241],alain:[142,75,272,4],jul:[68,43],is_suffix:[150,42],a001405:56,latinsquare_gener:0,transitive_id:320,is_uniform:5,abcccabba:42,to_semistandard_tableau:212,notat:[228,229,76,78,322,6,7,165,241,83,264,0,14,310,249,171,281,286,272,256,22,160,100,26,27,185,21,266,35,243,277,280,253,283,117,285,122,203,291,163,49,207,82,258,211,301,305,70,60,140,61,142,92,180,198,287,224,293,68,306,153],compositiontableaux:[162,140,166],path_str:256,"0x7f8fbe3c1140":[],fano_block:137,tupleofword:184,iterablefunctioncal:[299,154],taylor:[253,171,276],mike:[229,77,7,321,242,269,286,272,256,22,99,15,186,205,114,122,130,301,211,212,305,306,74,180,63,138,68,151],q_hook_length_fract:285,cbm:142,strongli:[184,56],normalizedclonablelist:48,"6ex":321,rearrang:[128,319,78],incorrect:[277,171,186,56],sublattic:[29,241],testalgebra:214,"_precomput":269,semilength:256,algebramorph:201,an_inst:119,qqbar:[5,68,43],idiom:[276,303,283,243,140,141,163],crossings_iter:308,compet:163,robinson_schensted_knuth:262,igm:[286,272,42],to_tensor_product_of_kirillov_reshetikhin_cryst:[220,55,153,310],hwl:272,to_domin:[287,101],finali:143,symbol:[253,195,229,75,42,280,276,0,306,307,186,184,18,144,256,190,170,43],hwc:220,briefli:[283,165],mutlipl:22,is_uniquely_complet:0,serious:184,hwv:[228,6,160],word_datatyp:[311,231,150,36,271],k_conjug:[298,306,211],felsner:163,vuillon:[312,42],backward:[95,56,22,184,291,176,243,68],directori:217,corners_residu:306,x_4:171,find_wilson_decomposition_with_one_truncated_group:[144,251],element_label:163,bij_infin:10,potenti:[269,256],degrad:184,x_3:171,all:[5,92,6,7,10,11,13,14,16,17,19,20,22,148,26,27,29,30,33,34,35,37,40,176,42,43,46,48,49,262,52,55,56,57,58,59,61,62,63,65,287,68,69,70,74,75,76,77,78,80,81,82,83,84,87,88,90,281,93,289,0,98,99,100,174,102,18,106,108,111,119,120,122,265,163,127,128,129,130,189,132,133,137,140,141,142,143,144,146,147,153,12,160,161,162,243,164,165,166,168,169,268,171,173,178,179,180,182,2,184,185,186,187,190,191,193,195,200,201,203,205,206,207,297,209,211,212,215,216,217,218,231,220,221,222,223,224,228,229,237,208,242,247,248,249,251,253,254,272,256,307,258,259,260,1,198,264,21,266,269,275,276,277,278,280,283,115,285,286,288,112,290,291,292,293,295,296,282,299,300,301,302,304,305,306,308,309,310,311,312,313,315,317,319,320],knuth1:40,lace:[281,277,76,302,143,70,218,310,220,264,207,13,127,35,227,69,153,291],pth:65,alg:[305,4],lack:[269,218],alb:143,hs_n:140,scalar:[155,75,162,6,82,83,61,14,249,143,259,260,188,276,277,280,283,119,201,291,243,295,297,298,258,309,218,142,92,180,314,68,11],disc:43,mlttorcbijectiontyp:10,abil:286,follow:[5,92,6,7,101,14,262,17,123,22,23,26,29,30,183,34,35,40,42,43,50,52,56,57,58,59,61,62,66,68,69,70,225,33,268,77,78,321,82,83,84,87,88,90,281,93,0,100,174,18,106,108,111,119,122,163,127,129,130,189,132,133,137,140,142,143,144,146,147,149,12,157,160,243,164,165,141,170,171,173,180,48,2,184,185,186,190,191,195,278,203,205,206,207,20,211,212,287,217,218,220,222,223,228,229,241,214,247,249,251,253,296,272,256,307,258,260,1,198,21,266,269,275,276,277,280,283,115,285,286,290,291,293,298,301,305,306,308,310,311,312,313,317,319],faster:[228,77,5,7,208,242,141,171,260,90,286,265,272,23,276,283,199,122,137,287,306,61,257,146,33],alq:277,i2p5:[19,169],list_of_output:184,init:[185,184,174],program:[253,33,256,56,137,283,163,310,218,102,130,291,121,125,47,209,52],add_mark:180,neglig:[253,269],deriv:[],is_field:[305,68],save_exceptional_data:217,liter:[122,68,163],replic:5,far:[253,276,285,182,140,101,122,293,295,68,153],print:[5,7,11,13,227,265,22,30,183,32,35,37,176,42,46,50,54,55,56,57,58,74,62,141,68,73,268,76,80,81,88,89,281,93,282,101,102,106,194,114,117,122,163,128,47,130,189,132,133,137,142,143,198,154,155,160,45,166,167,168,171,173,129,180,2,184,185,131,190,195,261,317,204,207,208,211,287,216,217,220,222,223,224,44,234,235,236,237,238,239,240,241,214,247,150,251,252,253,256,257,259,144,264,21,266,269,276,0,285,286,290,291,293,301,302,304,33,306,307,310,312,315,319,321],failur:[13,150,6,285,42],ticket:[12,229,5,293,7,83,242,167,141,184,169,13,171,88,172,269,43,175,286,289,42,256,307,186,174,21,183,187,176,190,205,35,276,280,115,285,119,291,163,207,177,130,189,132,298,299,319,211,303,137,138,306,59,217,61,310,247,304,63,266,147,68,151,153],induct:[286,75,42,148,48,61,283,171,260,130],is_leelizel_allow:319,nrpartit:306,from_frobenius_coordin:306,is_resolv:[137,144,80],baccabccbacbca:312,rctomltbijectiontypeb:10,partitionalgebra_ak:169,becker:125,grenobl:42,align:[321,310],function_factori:253,increasing_par:185,unshuffle_iter:171,ten:[127,171],haar:228,biword:262,rate:42,design:[],infimum:[229,115],s3p5:[19,169],a015521:56,whenc:61,what:[],guava:171,sub:[185,229,42,56,285,74,48,61,92,186,141,253,184,190,205,218,150,43],to_dag:211,sum:[],brief:261,version:[5,7,10,11,18,20,27,183,35,108,42,262,55,58,74,65,66,70,76,81,84,88,281,93,282,99,103,104,105,176,109,113,114,122,163,132,137,138,144,151,153,125,166,168,171,173,178,180,48,184,186,190,205,197,199,321,207,297,209,211,212,217,218,220,221,33,229,181,241,41,253,254,272,256,307,264,21,85,0,115,285,296,292,255,300,301,305,306,308,310,311,313,243],sur:[185,42,43],intersect:[],sup:[22,229],descents_composit:[128,68,286],themselv:[286,112,176,143,56,22,236,6,48,61,185,30,141,184,147,222,68,130],berkelei:[207,7,101],filteredcombinatorialclass:171,behaviour:[261,208,189,184,163],shouldn:256,bugeaud:65,aabaabaabab:307,arm_right:12,surpress:61,random_matrix:[253,47],"__xor__":184,figsiz:[5,143,290,276],stan2009:[198,7,163],sl000081:48,highestweight:[275,263,106],swap_decreas:42,mon2010:42,partitionalgebraelement_rk:169,number_of_left_special_factor:42,filenam:[319,217,81],xyxsxssxyxsxssxyxsxssxyssi:5,heurist:[306,146,269],bbbbbbba:307,ostrom:195,clifford:258,corig:220,seminormal_basi:61,hexadecim:[84,176],delta_derivate_left:42,proceed:[178,41,304,285,80,201,65,43],genericcellcomplex:163,certainli:[306,291,189],brandei:272,binaryrecurrencesequ:65,minor:[69,7],flat:[276,306,88],compositio:[298,199],"_max_slop":[130,269],umich:46,special_entri:58,bijectiondn:[281,220,55,310],s_lemma:306,flag:[163,52,112,43],stick:40,fusi:164,is_rectangular:7,known:[229,160,165,241,242,11,0,14,249,173,43,253,286,42,256,258,260,26,185,311,35,37,280,283,285,316,49,262,20,189,272,301,56,58,140,61,310,92,312,223,68,306],set_valu:[286,211,76,256,180,117,7,264,310,185,21,122,291,293,224,306,301],is_schubertpolynomi:314,glad:286,berth:[5,42],"_5_":285,valuabl:253,outlin:[306,184],dncsym:[297,27],maximal_chain_binary_tre:185,lambda_:143,find_brouwer_separable_design:[195,251],b_1_70:88,entropi:42,rosenfeld:[311,33],s0195669801905414:306,lodai:[286,285],hamming_weight:190,lightweight:74,crystalofgeneralizedyoungwal:108,ann:[281,264,42,99,5,58,218,310,207,241,180,21,11,306,163,247,205,68,52,153,132],maximal_chain_tamari_interv:185,euler_numb:171,partitions_min_2:269,cbbca:42,cours:[277,211,272,143,306,266,184,62,186,101,163,301,189,291],goal:[253,40],tensorproductofregularcrystalsel:[275,281,55,203,21],rather:[228,158,7,321,270,11,86,253,286,265,22,48,185,30,186,276,283,285,122,50,130,132,305,74,140,61,92,258,144,68],to_dual_translation_right:241,divis:[],a083216:56,hanani75:268,"0764v2":272,ribbon_class:224,perman:[62,56],to_explicit_suffix_tre:90,sandwich:276,characteristicspeci:[72,1],algebra:[],algebro:253,to_lehmer_cocod:286,t0check:218,reflect:[],catalog:[],finitewordpath_2d_cal:311,aaaaa:90,imrn:[228,142],cluster_class:319,pos_val:104,"short":[253,272,22,291,140,218,92,143,266,141,11,163,270,260,137],nakasuji:296,relabel_op:288,unhid:154,ambigu:104,caus:[253,133,276,78,48,7,231,61,30,141,295,301],callback:184,kang:[221,203,119,108,296],shade:93,integer_matrices_gener:315,multivari:[319,256,283,322,218,82,92,66,128,68],intimid:276,emmanuel:306,krtableauxrectangl:281,a001694:56,aaabbb:42,dcacbbecbddebaadd:307,dendrog_norm:30,okounkov:[286,61],elementwrapp:[265,308,112,290,11,191,132],style:[228,160,143,101,241,184,295,68,52],extendedaffineweylgrouppw0el:241,call:[4,5,6,7,11,14,16,43,22,24,29,30,183,34,35,37,40,42,49,50,52,54,55,56,57,59,61,62,63,65,66,68,322,74,77,78,80,81,82,83,84,87,88,90,92,286,289,0,98,99,101,102,18,106,176,111,114,119,122,163,128,130,131,132,137,140,142,143,144,146,147,151,154,155,161,162,125,164,165,141,169,170,171,178,179,180,48,2,184,185,186,231,188,189,190,205,195,261,200,201,317,206,207,208,12,211,212,214,287,217,218,220,221,223,228,229,230,235,236,237,241,242,247,150,249,251,253,112,272,256,257,258,259,260,262,198,21,266,269,275,276,277,278,280,283,115,285,303,291,293,295,298,299,301,304,305,306,307,308,309,310,311,312,313,314,319,243],ca1948:179,inward:223,border:[286,211,272,42,143,306,285,231,52],resort:20,stephen:186,kirillovreshetikhincrystalfrompromotionel:106,abaaabaababaabaaababaaababaaabaababa:307,might:[283,12,286,319,40,160,217,48,243,7,26,61,208,30,122,203,163,171,20,285],alter:[130,173],block_sum:75,quasisymmetric_funct:165,huang:185,"return":[1,4,5,6,7,9,11,12,13,14,15,16,43,19,20,21,22,23,24,26,27,176,29,30,31,32,33,34,35,37,282,40,41,42,44,46,50,48,49,107,52,55,56,57,58,59,60,61,92,63,65,66,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,87,88,89,90,91,281,93,289,0,96,98,99,100,101,102,18,268,106,108,111,114,115,116,117,119,122,145,159,125,126,128,129,130,131,132,133,137,138,140,141,142,143,144,146,147,148,149,150,151,152,153,154,155,160,45,162,163,164,165,166,167,168,169,170,171,172,173,178,180,182,2,184,185,186,187,189,190,191,192,193,194,195,196,199,200,201,203,204,205,206,207,208,209,211,212,214,287,217,218,220,221,222,223,224,225,227,228,229,230,232,233,234,235,236,237,238,239,240,241,242,246,247,248,249,243,251,252,253,254,272,256,257,258,259,260,261,262,198,264,265,266,269,271,273,275,276,277,278,280,283,284,285,286,288,112,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,322,317,318,319,320,321],antihomomorph:[140,272],framework:[286,178,306,56],which_step:11,bigger:[180,185,260],aabcabada:307,weyl_dimens:277,nonexcept:[],is_projective_plan:57,state_to:184,"0x7f271922e758":234,compris:[256,163],to_monoid_el:42,yangbaxtergraph_gener:288,unicod:256,i_jk:[133,216],truncat:[195,268,212,312,7,60,26,21,144,203,190,251,266],weight:[],to_grassmannian:99,thuemorseword:[312,36,42,307],favour:306,blj99:247,expect:[243,80,84,171,88,253,266,184,183,35,195,261,283,278,222,163,172,131,137,57,218,144,287,319],kr_type_box_with_categori:106,tcrystal:254,semistandardtableau:7,rooted_tre:48,simple_project:[143,6],salianc:286,mobius_funct:[304,163],halving_map:109,node_act:285,"3519v1":293,cbaabaaca:42,first_positive_root:276,fiber:285,advanc:[253,229,42,276,283,285,106,225,163,262,68],ordinarygeneratingseriesr:78,abelcheng1994:144,gfun:253,physic:253,dual_lattice_basi:241,thrown:184,thread:37,wlr:264,jeu:[122,7],tdesign_param:88,perhap:[92,180,168,189,184],wll:22,"_hash":[12,171,150],avec:253,yxy2crud:48,"5th":42,plouff:56,feed:[184,163],dina:184,feel:29,famou:[253,42,307],mersenn:[253,56],partitions_nk:306,dinv:[128,256],dsa:5,alexandr:253,least:[229,5,164,84,171,150,173,253,0,256,307,22,184,29,269,190,195,280,283,293,129,189,211,56,287,306,59,62,258,221,224,68],blank:184,optionali:143,fanci:184,superpos:276,dm_39_6_1:268,interact:[286,319,217,147],extendedaffineweylgrouppvw0:241,"2fa":163,number_of_open_symbol:256,store:[113,300,304,21,137,319,48,120,185,62,180,168,146,184,244,208,90],to_type_a:287,necklac:[],option:[],bruhat_pr:286,cluster_algebra_quiv:[35,319,217,120],hedlund:307,uniquerepresent:[4,6,7,11,50,265,22,23,24,27,30,35,107,52,58,92,70,225,72,76,77,82,83,91,286,282,99,101,18,108,114,284,117,222,122,159,163,132,140,198,147,71,153,166,141,170,178,180,48,185,205,196,199,317,9,207,211,212,287,221,305,223,229,241,242,246,112,272,256,1,264,21,273,283,115,285,254,290,291,293,298,301,33,306,308,309,310,313,315],is_strict:58,knu1973:256,kr_type_vert:106,blondin:[42,307],ribbonshapedtableaux:224,path_word_out:184,wieland:[260,212],albeit:[143,272],kind:[242,53,286,229,268,56,143,253,140,311,84,144,163,34,171],area_dinv_to_bounce_area_map:256,schathi1994:68,whenev:[155,229,7,80,82,171,88,281,256,98,261,198,266,195,253,283,278,285,291,163,131,298,137,305,144,68],barycentric_projection_matrix:276,remov:[229,268,76,160,163,7,242,168,184,169,171,88,90,281,286,112,0,256,22,99,26,101,102,30,186,106,108,276,195,40,176,42,253,285,201,122,296,203,125,211,212,137,305,70,304,140,61,62,180,144,63,313,311,138,293,68,220,306,225],withbasi:[283,141],kink:52,is_same_shap:0,danc:[],coeff_integr:12,vrep:24,contr:212,cleaner:[276,184],weighted_composit:78,well:[5,235,236,6,7,165,217,260,253,286,272,22,184,185,186,106,190,34,37,277,42,283,285,201,319,291,163,127,129,311,133,55,211,301,287,216,59,140,310,62,312,220,65,66,68],gale:130,proj13:160,splitnk:[138,242],"0751v1":[185,285],dedic:176,row_with_indic:69,projmat:93,"_list":[12,36,306,21,106,293,171],randint:[42,307,306,231,209,130],antipode_on_basi:[258,115,140,27,272],violat:[22,141,189],volkmar:286,rctomltbijectiontyp:10,label_as_input:184,cartantype_abstract:[302,69,237,119,167,291,89],aabde:311,rootedtrees_al:48,columns_intersection_set:211,bcdea:5,pretty_output:256,reach:[281,277,211,256,306,7,184,312,269,262,17,90,132],jackpolynomials_qp:309,orderedsetpartitions_:242,chemist:253,dict_list:248,sw2010:[68,272],acebeaaccdbedbbbdeadeebbdeeebeaaacbadaac:307,fillopt:311,standardtableautupl:[301,293],infinitycrystaloftableaux:[254,296],setpartitions_al:229,cdd:276,ridicul:276,cdc:184,orderedalphabet_backward_compat:176,squareicemodel:223,"0509265v3":115,worri:[13,253,277],font:108,spin_plu:228,block_matrix:137,e11:218,e10:218,mutation_typ:[319,217,120],symmetric_group_action_on_entri:[7,301],llt1997:4,abelien:43,stipul:253,promotion_on_highest_weight_vectors_funct:106,hit:[256,307,137,208,231,190],hnt06:27,hnt05:[286,285],finitewordpath_triangle_grid:311,is_symmetricfunct:68,rt1:48,longest:[155,276,296,256,42,253,304,286,185,312,291,108,163,224,269],rt3:48,rt2:48,projected_point_iter:311,is_indecompos:69,vct:[76,264],sturmian_desubstitute_as_poss:42,weaktableau_cor:180,brendan:268,cyclic:[],apply_simple_reflection_right:287,accept_s:54,eugen:247,a001227:56,a001221:56,statist:[12,296,256,42,261,180,306,253,7,184,310,220,291,108,222],rinaldi:42,a001222:56,vincent:[93,137,138,15,63,176,163,88],wrote:209,certif:[137,163],decreasing_parking_funct:128,stump:[319,256,217,24,2,120,119,172,35,279,69],dump:[72,155,75,4,5,171,2,83,242,141,214,246,169,0,14,249,128,90,91,311,286,289,272,96,22,98,78,31,15,161,183,188,34,309,295,273,314,259,284,42,196,200,288,159,125,49,294,107,12,130,299,212,56,304,287,59,322,140,61,92,258,231,307,147,118,149,318,243,71],extendedaffineweylgroup_class:241,mutabl:[30,285,217,184,15,84,241,269],ara:42,arc:[229,115],partition_to_vector_of_cont:75,affineschurfunct:77,arg:[7,171,90,286,289,178,0,22,26,184,29,21,251,35,276,42,117,119,201,288,296,203,291,163,298,54,137,306,59,142,311,143,144,66,154],baababbaabbabaababbabaabbaababbaabbabaab:5,ari:[253,33],lothair:[5,42,307],"0x7f8fc401e5f0":[],weingarten:308,arm:[12,306,7,293],bitrade_from_group:0,nontrivi:[61,66],llmssz:77,subsets_with_hereditary_properti:37,blurb:270,soln:[216,52],latin:[],taocp3a:102,syntact:[305,285,84],induc:[277,165,256,42,160,137,283,70,304,285,140,184,241,185,143,146,218,163,291,306,272],sole:[286,287,117,7,185,122,224],bibd:[],thu:[228,268,160,48,7,217,84,247,184,306,13,171,260,90,253,286,272,21,259,100,101,30,186,218,190,193,37,276,195,115,42,283,278,285,120,287,122,317,163,12,298,319,137,305,58,140,61,142,144,65,222,68,70],sumspecies_class:196,find_:251,"_is_posit":68,fgh:[141,16],solv:[253,133,40,0,78,137,260,216,100,130,311,258,146,163,247,14,68,249,52,189],bastian:35,inertia:311,vectorspac:247,kr_type_dn_twist:106,to_highest_weight:220,crystalofalcovepathsel:132,latticediagram:12,roman:160,context:[37,253,277,272,306,222,48,140,163,127,301],"8ab":80,bond:70,a111775:56,a111774:56,bij_type_d_twist:197,perm_mh:56,show3d:[205,40],has_edg:137,residu:[286,112,268,180,287,306,293,7,222],strategi:253,nonparabolic_positive_root_sum:143,mistak:[68,7,272,56],bruhat_lequ:[286,163],chli:16,ribbon_shaped_tableau:224,fractionfield:[83,77,4,283,309,92,298,68],due:[6,165,81,84,171,269,91,286,272,256,186,190,276,283,199,115,122,163,294,130,305,140,92,220,313,319,69],heckealgebrasymmetricgroup_t:61,to_nondecreasingparkingfunct:128,graft_list:48,qschur:[162,140,272],brick:[306,293],spin_of_ribbon:180,arm_length:[306,293],murnaghan:68,s_c_k:130,a052854:230,defect:[42,307],ribbon_decomposit:22,number_of_touch_point:256,bispecial_factor:42,semistandardskewtableaux_al:122,frozen:[319,217],fss07:291,aventur:163,restrictedpartit:306,abacacacababababcbcbac:311,abov:[228,160,271,7,165,241,13,260,251,43,281,286,254,42,256,22,78,184,186,106,269,108,283,190,272,276,195,32,280,253,164,288,122,163,172,82,52,132,70,140,61,142,311,180,144,313,222,68,306,154],rootswithheight:132,pairwisebalanceddesign:[57,266,278],to_digraph:90,row_containing_sym:0,abstract_tre:[185,30,48,285,84],has_period:42,internal_product_on_basi:[140,201],is_ribbon:[122,211],indecomposable_block:69,lenart:[11,218,132],rim:[99,306],"89d":80,rig:[],rid:[283,298],is_strict_refin:229,fermion:[70,310],gyration_orbit_s:212,minim:[229,7,253,286,112,307,180,184,185,37,40,42,117,285,122,291,163,127,211,301,137,306,304,224],rsw_shuffling_el:61,dgci:307,determinant:92,hag2008:256,test_meet:22,partition_rigging_list:220,subalgebra:[228,272,160,305,101,186,106,225,283,193],higher:[],nantel:272,mcandrew:178,graphpaths_st:200,e_ik:61,dm_55_7_1:268,nonattackingfillings_shap:12,hadamarddesign:[88,17],setpartitions_setpart:229,covari:184,show2d:40,"_from_dict":283,a000100:56,robust:[68,59,269,243],provabl:[281,65,153],obiu:304,casamay:253,a000108:[253,230,56],"_7_":[84,285],associated_reflect:143,abcdc:42,kashiwara:[281,277,254,221,26,310,21,106,203,108,290,50,296,153],aacacc:311,kr_type_boxel:106,matrices_with_rcf:222,propos:[184,307],rewound:299,dendrograph:30,remmel:68,"0x7f26efbbc398":227,permutohedron_lequ:[185,286,285,189],to_symmetric_group_algebra:[305,140,61],bancroft:300,hai1992:7,constant_func:130,endofunct:56,affinecrystalfromclassicalandpromot:[265,263,106],mdict:228,"_mobius_function_matrix":304,subsetspeciesstructur:273,equidistribut:[286,184],theoret:[253,42,307,308,312,187,127,171,68],a001055:56,permutationspecies_class:246,tok88:58,"_min_slop":[130,269],"0x7f26fb9788c0":184,euler:[253,0,56,306,187,171],abelian_rotation_subspac:5,inversion_pair:117,bms06:65,kirillovreshetikhintableauxel:[281,55,106],subposet:[306,163],intervals_numb:163,kass:101,moodi:[254,26,101,142,9,203,11,13,310,132],preexist:[13,276,141],catalan:[253,230,256,56,285,2,185,30,128,171,43],permutations_msetk:286,cubepath:311,extendedaffineweylgroupwf:241,x_basi:115,palindromic_lacunas_studi:42,infiniteabstractcombinatorialclass:[128,59,171,2],"_infinite_cclass_slic":171,immaculate_by_bernstein:140,rgbcolor:[143,276,311],collect:[],arthur:[122,221,132],tmword:307,binarytreespeci:[230,66],admittedli:286,mpolynomial_libsingular:314,plot_fundamental_chamb:[143,276],summand_embed:141,diagram_algebra:186,g2xg2:160,recurrencesequ:56,empi:163,trait_nam:56,understood:[272,256,160,283,306,34,68],open_extrep_fil:125,unspecifi:[84,186,278,285,43],word_in:184,character_polynomi:306,littelmann95:11,bo39:247,i_1r:[133,216],friedberg:58,prom:106,t_y:82,get_next_po:[12,166],prog:310,leftmost:[281,286,296,21,285,306,7,311,84,122,108],prod:[228,42,287,306,61,102,222],proc:[228,296,42,160,293,165,61,241,92,11,108,125,205,309,142],to_bounded_partit:[180,287,99,306],coambient_spac:6,use_monotone_triangl:212,pbd_4_7:80,delign:306,barp:129,y_eigenvector:[218,82],hw_auxiliari:106,subwords_w:151,i_12:[133,216],i_11:[133,216],qing:43,has_isomorphic_subposet:163,crystal_of_letters_type_a_el:290,transpos:[276,286,68,75,212,280,137,306,61,184,13,88,69,291],fibs_in_some_rang:171,yla:108,haglund:[12,256,162,165,218,128],assoc:42,t_0:142,t_1:142,cecm:268,gamma:[99,171,0],representation_matrix_for_simple_transposit:75,mst:117,christoffel:307,digraph:[276,84,11,207,320,90,254,23,231,184,104,106,108,109,190,205,35,113,42,264,197,200,285,119,288,112,290,163,9,127,50,296,132,300,211,304,217,310,198,221,66,319],binaryforestspeci:230,selecta:310,announc:190,simplici:163,w0pv:241,stinson2004:[247,144,266,261],canad:[195,88,115],question:[253,160,218,311,225,190,68,269],fast:[],rs06:115,test_equival:185,adjac:[18,276,112,40,185,257,137,24,286,184,180,62,288,225,306,143,190,151,130,212],arithmet:[253,42,78,29,65,171,68],nodes_by_length:143,rowl:211,iwahoriheckealgebra:121,internal_coproduct:[297,68,201,115,272],repeatedli:[306,229,90],is_difference_famili:[247,208],oa_from_quasi_difference_matrix:[144,268],"_o_":285,"_latex_":[185,285,256],heartach:133,underlying_set:74,ingredi:160,"3888v1":260,dynkin_diagram:[228,73,44,45,235,236,6,238,239,240,167,13,250,227,89,252,143,101,234,194,35,237,32,119,204,302,70,313,69,291],"__lt__":[304,290],sta97:29,crank:306,delta:[76,61,307,143,259,101,221,108,193,275,277,42,203,243,9,52,132,218,142,312,220,231,68,11],abaabaababaabaaba:312,consist:[228,268,160,5,6,7,321,180,141,218,169,0,211,171,90,207,253,93,272,256,21,22,78,48,184,185,30,186,311,173,190,35,276,195,40,42,285,286,288,122,291,163,127,128,129,209,52,189,282,208,301,303,137,306,304,61,62,143,313,307,222,69],caller:236,to_monotone_triangl:212,instantan:253,highlight:[276,319,217],common_prefix:40,determinis:184,derang:[],finitewordpath_3d_callable_with_cach:311,enlarg:276,partitions_start:306,a000668:56,from_symmetric_funct:[297,140,115],capit:165,plusinfin:22,"3170v2":68,graham:56,delete_transit:184,rainbow:42,labelledrootedtrees_al:48,reading_ord:12,up_to_isomorph:208,ribbontableaux_shape_weight_length:117,nick:[244,56],subsetssort:74,element_to_root_dict:42,weight0:218,dlx_incremental_solut:40,rc_elt:[220,153],nice:[276,93,56,5,140,184,143,167,146,127,89],word_gener:307,rstu:311,tensor_incopr:[68,201],nb_subword_occurrences_in:42,orderedsetpartitions_sn:242,diffenc:312,"0x7f8fbe3bab18":[],meaning:[143,293,78],"0th":65,broecker:228,subtableau:[180,301],"_rsk_iter":262,gr_def2:68,gr_def1:68,ternari:190,vice:[211,76,180,117,7,201,264,310,185,122,106,225,293,224,68,306,301],reiner:[143,172,286,272,61],"lev\u00e9":42,circuit:[253,147],weightr:228,seeling:186,hall_littlewood:[83,272,77,283,165,92,68],burnsid:222,nap_product:16,edg:[44,73,232,233,45,235,236,237,7,239,240,167,266,169,227,89,16,90,252,253,93,256,307,143,24,48,220,184,320,30,186,106,32,205,35,37,276,40,194,42,238,117,200,285,119,120,319,288,204,163,127,128,52,132,300,211,302,137,70,308,217,207,304,198,146,147,286,234,306,291],is_poset:163,derksen:35,anl08_022martinezc:178,"0304a":144,to_dyck_word_tamari:[285,256],fw2:[228,160],oa_7_66:268,simon:[5,163],twin_prime_powers_difference_set:247,oa_7_68:268,extraspeci:143,corresponding_basis_ov:68,realli:[155,276,211,256,253,160,22,259,306,6,7,322,61,218,243,205,307,291],outgo:[42,143,200,217,184,223,90],stabli:[258,260,14,68,249],plot_label:143,setspeci:[91,54,41,78,161,196,66,149,294,107,71],carlitz_shareshian_wach:68,"01b":80,gino:173,dlxm:133,right_special_factor:42,attrcal:[253,265,276,259,285,147,163,171],weaktableaux_bounded_with_categori:180,krrcnonsimplylacedel:[220,310],electron:[212,256,283,115,184,287,311,21,163],intertwin:[12,220,218,82],stackoverflow:184,free_modul:[228,77,155,214,141,169,16,272,259,27,186,193,115,243,295,297,298,305,140,61,314,68],ambientspaceel:295,relev:[276,289,0,78,180,182,160,7,61,241,291,66,316,171],jqp:[283,309],three_n_minus_two:129,hook_product:[306,309],lowerchristoffelword:307,analco:178,dealt:[184,90],claudia:272,cfl:68,smaller:[228,229,5,7,208,225,87,269,286,272,256,143,185,30,35,40,42,285,46,163,172,129,212,306,61,62,180],half_width_boxes_type_b:[76,264,310],kt97:165,balkova:42,hardcod:[205,35],fold:[],blanklin:[76,276,168,253,22,160,264,104,109,205,35,113,40,197,117,285,293,55,211,310,220,153],cfz:[143,24],preli:16,upper_cov:[306,211,163],rrr:311,plot_tikz:93,compat:[211,95,301,22,117,7,184,46,21,122,141,176,243,68,306,90,212],combinatse12:182,compaq:42,compar:[293,164,84,167,225,87,89,253,286,256,184,185,176,190,276,42,261,285,163,189,132,56,304,306,218,142,62,146,11],hokkaido:5,antichains_iter:[304,163],find:[],halllittlewood_q:83,halllittlewood_p:83,avinash:52,deg_inv_lex_less:42,iter_st:[190,184],is_finit:[44,73,232,233,45,235,236,6,238,239,13,171,227,250,252,289,234,194,35,237,32,42,119,204,299,302,217,312,319,69,291],schwendner:61,ejcnt:5,finite_state_machin:[190,184],sawada:187,projectedlevelzerolspath:[21,263,11,218],to_b_basi:305,tex_from_array_tupl:321,covering_design:173,larger:[228,7,247,269,286,143,259,184,266,108,205,276,40,163,298,306,310,62,257,220,146,65,147],"_name":[137,214,289,253,125],nakajimamonomi:[275,263,157,221],bd1:137,bd2:137,exponentialnumb:56,abaababaabaababaaba:42,typic:[281,276,301,253,143,259,236,277,184,142,84,220,218,283,190,291,20,286,173,132],lyndonwords_class:98,nondiagonaliz:65,set_spac:146,appli:[228,229,268,76,7,165,241,84,11,269,14,249,90,281,93,297,20,280,251,217,22,260,257,220,27,102,18,21,106,218,301,277,195,184,42,253,319,283,115,285,286,120,185,288,122,265,163,82,272,258,211,212,287,306,307,140,61,142,92,143,144,231,147,312,68,180,154],approxim:[205,289,312,269,253],coefficient_cycle_typ:78,inequ:[253,272,24,241,62,171],api:125,lower_contains_interv:185,fed:184,cilc:154,from:[2,12,5,92,6,7,9,10,11,13,14,16,43,18,297,20,22,23,24,26,27,176,29,30,31,33,34,35,36,37,282,39,40,41,42,46,50,48,107,52,54,55,56,57,58,59,61,62,63,68,69,70,225,72,74,75,77,78,80,81,82,83,84,85,87,88,89,90,281,93,289,0,96,98,99,100,101,102,103,104,105,106,108,109,111,113,114,115,117,118,119,120,122,265,159,125,127,128,129,130,131,132,133,136,137,138,140,141,142,143,144,147,148,149,150,151,152,153,154,155,160,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,182,183,184,185,186,187,188,189,190,205,192,193,195,261,197,200,201,203,321,206,207,208,209,211,212,287,217,218,231,220,221,222,223,224,228,229,262,181,235,241,242,244,246,247,248,249,251,253,254,255,256,257,258,259,260,198,21,266,268,269,322,273,276,277,278,280,283,284,285,286,288,112,290,291,292,293,294,295,296,272,298,299,300,301,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,243],class_siz:[35,217],indexed_gener:141,is_balanc:42,few:[37,281,296,0,253,5,115,266,186,247,68,260],usr:311,kleber:[],marked_node_str:291,sort:[5,6,7,11,14,227,22,148,24,30,31,32,34,37,40,42,46,52,54,74,61,66,68,225,73,87,89,90,93,282,194,119,163,128,130,189,132,137,140,143,198,146,147,44,45,162,165,166,167,141,171,175,48,184,186,190,278,201,317,204,206,207,211,287,222,228,229,233,234,235,236,237,238,239,240,214,247,260,269,252,272,258,249,266,275,276,280,283,115,285,286,288,291,301,304,305,306,311],detail:[229,160,5,6,7,20,84,225,247,171,310,260,269,253,286,289,0,256,307,143,259,99,198,184,30,266,187,176,283,190,191,35,277,42,164,115,285,119,46,122,291,163,177,319,211,303,137,138,70,140,218,142,311,144,63,147,68,69,306,153],standardpermutations_avoiding_321:286,multichoose_nk:96,vol5:5,vol7:195,cycle_speci:159,a_ij:119,oa_14_524:268,b3p5:169,posetel:[39,163],augment:[253,218],annoi:163,counterexampl:171,left_padded_kronecker_product:[68,140],executor:183,black:[276,93,40,0,256,5,306,185,143,291,223,127],fjournal:0,tau:[56,5,293,241,143,198,222],finitewordpath_cube_grid_callable_with_cach:311,"_get_list":48,nr_distinct_symbol:0,deepcopi:184,tab:[268,301,56,215,278,7,80,61,28,21,231,307,283,190,127,47,189,17],xmin:311,tan:160,tao:[],psi_involut:[140,272],eigenfunct:92,counterfeit:163,"_test_enumerated_set_contain":147,v_4_1_rbibd:80,spc:75,bibd_from_td:266,uqam:[5,305,311,42],possibili:312,six:[],balancedtre:30,product_01x10:184,random_empty_cel:0,cardin:[5,7,11,15,19,22,23,30,31,34,42,50,57,58,59,62,225,74,88,281,286,96,98,99,102,18,106,176,111,114,117,118,122,145,163,127,128,47,130,131,137,198,146,147,148,149,71,151,153,161,162,141,169,171,173,177,178,180,48,2,185,187,205,278,317,206,207,209,211,212,221,222,223,224,229,208,242,247,269,253,254,256,144,264,21,266,275,200,285,291,293,299,301,304,33,306,308,310,315,126],is_in_south_edg:52,sid:206,instead:[228,229,205,78,6,7,80,82,84,201,218,247,211,171,88,260,16,90,253,93,289,95,256,307,22,303,48,266,184,30,186,187,269,176,34,243,277,276,195,115,42,261,283,278,285,119,286,46,122,291,163,207,262,177,12,52,131,319,208,304,0,137,57,306,59,140,61,310,311,143,144,63,147,138,68,69,153,225],verlag:[304,283,42],memoir:[5,180],sim:222,msdn:63,gaussian_binomial_coeffici:43,ip1:185,sblw:98,exp_high:[306,293],poset_exampl:189,dw2:[185,256],dw3:185,dw1:[185,256],symmetric_function_r:[83,4,283,309,92,68],light:61,rhombus_piec:52,check_n:[306,211],chapman:[268,184],symmetricgrouprepresentations_class:75,is_distribut:[29,189],icerm:[52,218],divide_length:42,elif:184,max_sum:[22,306,269],ouput:[40,256,42,30,180,285,4,48,84,87,297],kbb:298,daebc:148,word_funct:190,is_proper_suffix:42,a000292:56,a000290:56,cohomolog:52,actual_row_col_sym_s:0,glen:[231,42,307],set1:[5,93],additionn:195,linearextensionofposet:198,binarytrees_s:285,kuniba:310,qs4g:61,willenbr:160,freeman:311,crash:[183,141],finiteword_it:231,to_triangul:256,amultipl:[185,256],bernoulli:[],a000120:56,qdm_35_7_1_1_7:268,fingerprint:253,a000129:56,successor:[143,285,184,288,163,127],binary_search_tree_shap:[286,285],trac:[12,229,5,293,7,242,167,141,151,169,13,171,88,172,269,43,175,311,286,289,42,256,307,143,186,174,21,183,187,176,190,205,35,276,184,280,115,285,119,46,291,163,207,177,130,189,132,298,299,319,211,301,303,137,138,306,59,217,61,310,247,304,63,266,147,68,69,153],edit:[286,42,283,24,308,101,20,92,266,184,163,247,171,310],tran:[286,115,179,160,222,285,311,163,127,132],"1r0l":[285,256],q_jordan:43,diagram_styl:256,baliosian:184,polit:56,finitedimensionalhighestweightcrystal_typee6:275,finitedimensionalhighestweightcrystal_typee7:275,lorentzian:69,"_product_from_combinatorial_algebra_multipli":298,gl_n:241,combinatorialfreemoduleel:[228,272,155,259,115,140,27,214,186,141,314,169,295,68,193,243],"0402086v2":285,hadawiki:81,osshimo03:70,our:[77,78,7,309,218,247,171,281,286,296,256,184,183,276,253,283,115,285,149,163,132,212,302,56,305,306,140,61,257,223,68],composition2:140,out:[7,214,251,253,286,254,0,256,259,184,30,108,190,276,42,117,285,303,122,297,130,211,301,56,74,61,63,147],b59f:212,flag_h_polynomi:163,hass:[],reflection_hyperplan:[143,276],categori:[],sp0:286,geom:163,clockwis:[35,52,212],coxetermatrixgroup:170,common:[],"__next__":184,volker:205,acted_upon:142,y_index_set:82,jing:[298,68,310],york:[83,311,283,199,309,92],dictionari:[],anyhow:184,words_al:[311,98,59],ababaabababaababaabababaababaabababaabab:312,principal_submatric:69,dyck:[],bjbr:287,geo1:78,descent_test:140,geo2:78,gelfandtsetlinpattern:[58,158,212,121],positive_imaginary_root:143,is_less_tan:229,schscr:[281,264],random_element_of_length:287,is_clos:311,number_of_fct:162,subtableaux:180,isbn:[283,291],is_non_cross:308,"_current_sum":269,finiteword_list:[98,231,42,307],plainli:[34,201],extra_code_befor:93,star_involut:[140,272],heckealgebrarepresent:[218,82],realization_of:[241,272,77,180,165,140,201,68,260],no_r:160,unknown:[80,167,247,171,88,89,289,266,42,261,278,36,291,131,306,217,311,312,144,231,316,319,69],creator:173,capac:[253,163],strongtableaux:180,stephan:184,nestings_iter:308,zxy:5,siam:[300,178],pierifactors_type_d_affin:[45,225],single_edge_cut_shap:285,"0x7f271921dd70":237,nrcombin:15,shell:199,number_of_permut:171,juli:285,shallow:184,vecpar:282,"1l0r":[285,256],hl08:296,perfect_match:308,protocol:[30,269,84],richer:253,setpartitionspkhalf_k:169,ouptut:144,"_ceil":[130,269],multiskewtableau:117,refine_aord:289,"_test_passoci":83,eltp:115,clip:276,dictionary_from_gener:222,horizontal_dominoes_remov:106,cohen:[253,33,62,146,163,129,130],maximal_el:[211,304,306,285,185,225,163,189],special_node_str:291,coher:[144,319],ringel:305,disjoint:[169,253,286,229,268,0,42,242,5,163,48,186,184,137,144,141,143,34,171,269],left_act:180,elth:115,eltm:115,arezzo:42,inform:[228,33,75,160,5,163,7,253,20,10,11,207,247,88,262,90,266,312,92,93,254,0,251,307,22,261,48,220,184,186,106,296,173,108,283,37,276,195,42,281,164,199,278,286,265,317,291,125,9,127,128,129,52,304,301,299,256,56,137,57,70,74,140,61,62,180,144,287,293,68,153],sizescreen:205,semistandardskewtableaux_shape_weight:122,jacobson:0,orderedtrees_all_with_categori:84,preced:[185,46,256,160],possibilit:184,which:[],cdab:42,ncsf:[38,272,162,165,140,201],size_of_alphabet:59,troolean:[247,144],bmbgl07:307,oss2003:310,who:[253,173],returns_to_zero:256,add_from_transition_funct:184,maximal_cyclic_factor:287,are_compar:304,d2012:287,why:[261,129,291,142,241],count_rec:117,dens:[133,212,180,216,141,146,163],pipe:[297,229,115,184],a000578:56,determin:[228,293,321,82,253,11,260,251,91,281,93,112,272,256,217,22,259,261,100,27,21,106,188,269,108,190,313,35,276,184,280,196,283,117,285,201,296,240,163,9,294,295,20,52,189,301,299,319,211,212,304,287,58,59,140,61,101,62,144,146,65,286,223,68,69,306,71],nonincreas:[306,229,272],irrat:307,rc_crystal:264,acbbc:42,riggedconfigur:[157,76,181,168,10,123,255,220,264,103,104,105,106,109,275,113,85,197,292,207,310,263,153],short_root:143,ghghhg:307,recur_gen2:56,recur_gen3:56,syntaxerror:165,finitewordpath_all_cal:311,niet:163,chri:[272,201,77,166],is_pairwise_balanced_design:[57,266,268],commutes_with:42,wordpaths_triangle_grid:311,locat:[253,286,282,276,180,7,168,108,262,90],leading_coeff:188,unioccurr:42,test_algorithm:130,imajor_index:[286,256],lemma:[195,268,261,306,278,80,82,140,144,106,203,65,201,222,26,251,21],durand:42,to_dyck_word:[212,256,306,285,2,30,128],alasdair:178,local:[113,311,56,163,7,61,20,185,122,222,127,269],right_permutohedron_interval_iter:286,cube:[],group_law:247,hs3t:4,clonablearrai:[286,229,242,287,58,285,198,84,220,223,269],fano2:137,fano1:137,set_ord:141,notimpl:35,lossless:42,wallpap:276,temp:229,ides_composit:128,bisect:56,postiv:68,transpositions_to_standard_strong:180,assafdeg:306,nauk:58,affinepermut:287,partit:[],is_upper_semimodular:29,b_matrix_class:319,view:[241,61,207,260,253,93,256,180,198,184,30,108,190,285,286,317,291,163,127,52,132,298,212,218,220,313,222,225,11],return_output:319,modulo:[],w0v:241,knowledg:[268,7],w0p:241,kyoto:[],construct_final_word_out:184,p24:306,combinatorialfreemodule_cartesianproduct:141,p22:52,imagemagick:[311,40],modulu:[5,253,65],closer:[21,256,82],still:[253,303,108,269,160,258,306,184,21,122,298,146,11,147,163,272,225,153,212],outside_corners_residu:306,dll:154,favor:69,crude:127,theta:[68,101,42],affinepermutationgrouptyp:287,dlx:[247,183,40,133],fanoplan:137,x13:27,nivat:[42,307],elimin:253,"03c":80,delete_st:184,cartantype_simply_lac:[45,236,237,240,167,291,13,89,252],semistandardtableaux_shape_inf:7,extendedaffineweylgrouppw0:241,jungnickel:[247,80],entir:[62,42,253,143,7,184,29,84,220,168,313,125],joe:[33,187],"10ex":184,to_d_basi:305,jon:171,addit:[],a001147:56,canope:285,nabla:[92,128,68,52,256],dict_addit:248,num_edg:304,semistandardtableaux_size_weight:7,punarbasu:171,abbabaabba:312,pirillo:[42,307],element_in_conjugacy_class:286,wale:144,wall:[],ubomira:42,arriv:[286,184],walk:[276,277,256,143,241,127],number_of_circl:58,addable_cel:[306,68,293],implment:287,x_p:163,removable_cells_residu:306,respect:[228,229,268,78,5,162,171,7,165,241,83,84,253,225,0,87,249,14,43,281,286,296,272,256,217,22,148,260,1,184,130,29,30,266,106,188,235,34,309,295,243,37,276,40,280,261,283,115,285,201,185,21,291,163,127,262,52,189,258,211,301,137,319,306,59,140,61,310,92,143,144,221,307,222,223,293,68,69,180],cells_contain:[122,7,301],bor09:[306,68],masato:[281,310,153,207],integervectorsmodpermutationgroup_al:317,cauchi:162,bbf:58,compos:[228,286,289,41,42,160,253,184,257,298,312,262],bba:[5,59,42,307],compon:[78,6,7,321,241,83,11,169,171,260,90,281,254,280,293,217,180,160,184,21,186,106,190,35,42,283,115,285,94,290,291,163,127,130,319,301,302,304,70,140,207,258,221,68,306,225],besid:[276,144,278,266,160],my_el:163,a001157:56,tmp_filenam:311,number_of_cross:308,bbr:106,bhrz06:115,inbound:184,presenc:286,long_root:143,orthogonal_arrays_build_recurs:[144,195,251],x_5:171,x_2:171,p_inv:106,intermediate_nam:160,x_1:171,present:[253,195,184,0,5,283,271,218,286,61,62,266,317,11,163,295,68],test_rsw_ncsf:61,is_long_root:143,is_princip:319,vanilla:244,constantfunct:269,setpartitionsprk_k:169,lyndonwords_evalu:98,ion:[218,142],sebastien:[93,40,307,5,59,286,311,312,192],wilf:[306,163,7,56],observ:[247,253,101,42],to_permutation_group_el:[12,286],latinsquar:0,customiz:[],relabel:[],is_rich:42,texttt:184,partitionalgebra:[186,121],avl:285,blueberri:[90,42],motiv:[253,301],avi:180,dual:[],transitiveidealgrad:147,thue:[312,307,42,56],heights_sequ:256,weaktableaux_factorized_permutation_with_categori:180,uniti:[272,5,65,247,68,43],construction_3_3:[195,251],construction_3_4:[195,251],construction_3_5:[195,251],construction_3_6:[195,251],ryser63:130,a049310:56,francoi:283,cross:[253,277,256,143,308,7,223,186,121,13,171,132],latex_vallei:256,grouplik:140,member:[88,0,129,56],cfz2:143,respecit:228,largest:[185,195,272,42,56,5,306,261,7,220,241,62,180,144,189,269,163,286,130,131],schill:[77,241,225,269,281,112,180,99,264,21,106,205,291,163,207,82,52,132,298,70,218,310,68,306,153,11],difficult:[322,68,260,78],milehigh:144,"125000cm":93,sage_list:56,octagon:42,close_symbol:256,herit:311,myks221:180,mpolynomialr:314,cyclicpermutationgroup:288,cartesianproduct_it:299,add_forbidden_label:52,find_min:282,aabaaba:42,english:[281,286,296,211,76,180,117,7,321,310,122,264,293,224,306,153,301],"_test_rel":[218,142],divided_difference_on_basi:142,krewera:165,morse2011:298,alcovepath:[275,191,263,132],p_partition_enumer:163,obtain:[5,6,7,10,11,13,14,16,22,23,26,30,32,34,35,42,262,52,56,61,62,231,68,69,33,268,78,80,84,88,89,90,286,289,282,100,18,106,108,117,119,122,163,127,189,132,140,142,257,198,146,147,151,153,12,160,165,167,178,180,48,184,185,186,188,195,201,203,206,207,208,212,287,249,217,218,220,222,228,229,241,247,260,251,253,254,272,256,307,258,259,144,21,266,269,277,283,285,288,296,291,293,172,298,301,302,305,306,308,310,311,312,314,315,319],gray_transduc:184,heavili:[62,84,195,301,283],gillespi:269,simultan:[283,253,286,278,308,6,218,184,319,186,296,61,222,129],removable_cel:[306,68,293],patt:286,permutations_cc:171,ssrct:162,skp:[117,211,122,4],bell:[],smith:266,jard:163,discuss:[253,211,160,259,58,243,119,184,29,291,283,68,52],descent_polynomi:286,sum_gener:289,other:[],restrict_domain:5,suffix_link:90,mathoverflow:68,macdonaldpolynomials_ht:92,affine_elt:265,cartantype_standard_affin:[291,32],max_degre:68,m_i:272,aaabbbccddef:311,abaccba:311,know:[228,77,12,7,165,269,247,171,88,173,253,272,256,143,24,266,251,37,277,261,283,278,80,163,130,131,298,54,140,144,231,146],press:[5,7,80,81,83,247,311,286,256,307,101,29,41,42,283,122,163,58,308,309,92,306],redesign:93,last_column:212,ferai:308,theor:[312,42,307],clumsier:[258,260,14,68,249],anyon:286,bc1:[291,32],point_siz:5,unord:[],pullback:160,bc2:32,format_transition_label_revers:184,subsystem:[143,241],qdm_37_6_1_1_1:268,exceed:[306,301,256],elki:212,pariti:42,growth:[],superclass:[30,117,115,48],smoothli:[276,195],kschur:[180,283,298],kdp:223,lapont:306,parkingfunction_class:128,bbbbbba:307,leaf:[253,256,42,30,285,48,84,66,90],lead:[253,286,42,165,184,144,218],standardtableaux_s:7,leav:[72,230,7,84,246,269,253,286,254,184,30,186,106,273,284,285,159,107,306,61,144,147,66,318],oa_10_520:268,is_k_tableau:[180,122,7],speciesstructurewrapp:[161,149,196],"bj\u00f6rner":163,fastranktwo:[23,263,127],orderedalphabet_finit:176,weslei:[306,256,42],investig:[253,142],quasiperiod:42,order_id:[304,163],pathsubset:319,"enum":[29,62,283,256,163],to_bounded_tableau:180,check_input:[122,286,78],xor_transduc:184,obei:153,a000142:56,scalar_factor:11,krenn:[190,184],standardtableautuples_al:301,abcabbccabcabcabbccbccabcabbccabcabbccab:5,rare:[228,253],finitewordpath_north_east_str:311,column:[268,5,243,7,81,166,83,168,11,0,251,281,93,296,272,180,259,220,21,106,108,301,276,195,280,261,319,119,201,122,291,293,207,50,130,131,132,298,133,55,211,212,137,305,306,61,310,92,144,315,57,223,224,286,69,153],permutohedron_pr:286,thwart_lemma_3_5:[195,251],constructor:[],badbcdb:42,infinite_word:[192,231],youngrepresentation_orthogon:75,disabl:[12,195,88,261,137,276,278,80,184,144,286,269,163,171,68,69,131,266],check_nw:[306,211],own:[253,276,40,160,22,306,285,184,143,163,205,88],addable_cells_residu:306,lambda_catabol:7,automat:[5,82,171,150,43,175,253,48,186,184,266,37,195,283,278,291,130,56,137,57,308,311],"_plot_project":[234,240],allow_non_fin:184,forget:[253,286,285,48,184,30],schocker:305,ordered_tre:[30,48,285,84],assciat:144,topological_entropi:42,is_partial_latin_squar:0,sudoku:133,van:[88,268,272,162,117,144,68,251],val:[113,85,255,181,197,253,103,104,105,109],cycleindexseriesring_class:78,involut:[75,160,5,7,14,249,281,42,256,258,106,280,283,115,122,49,297,272,55,211,56,306,308,140,312,220,68],macdonald1995:92,symmetricfunctionsnoncommutingvariablesdu:27,atkinson:305,appl:[256,42,307,5,308,92,312,16],arg1:[190,168],"var":[12,319,253,306,308,184,190,186,218,149,68,43],find_construction_3_6:[195,251],unwrap:163,ma1995:309,type_g_affin:204,unambigu:211,clonablelist:[12,84,180,7,30,122,171],tambrack1962:185,wittdesign:[137,88,17],suppli:[228,253,287,160,101,291],joinsemilattic:[29,163],made:[253,93,211,212,42,56,276,117,285,140,256,251,125,247,286,306,189],setpartitionsik:[19,169],symmetric_group_algebra:61,whether:[228,33,155,322,271,7,80,321,241,150,84,141,11,247,170,87,88,260,171,251,253,286,129,272,269,21,22,259,99,48,2,184,130,185,30,266,106,189,108,190,243,277,276,195,40,42,261,198,278,285,303,287,122,291,163,311,211,128,166,52,131,298,299,319,208,220,137,305,306,304,60,218,62,143,144,231,65,57,312,68,82,180],test_ribbon:140,unshuffl:[171,61],record:[137,162,306,217,20,108,128,319,262,132],below:[12,5,6,7,165,81,241,306,218,171,90,43,281,286,20,256,307,22,184,52,21,269,276,0,253,115,285,291,163,127,208,130,298,133,211,137,70,60,61,92,315,293,68,216,225],kleshchev:[301,293],deg_lex_less:42,significantli:[137,33,88,184],multip:108,addison:[306,256,42],complementarydesign:17,a_hopf_algebra_approach_to_inner_plethysm:68,limb:146,mutual:[],definecolor:93,graphpath:200,portion:180,fire:6,book:[83,75,42,56,33,253,228,92,211,35],bool:[253,93,40,42,98,48,311,30,173],boom:40,branch:[],pvw0:241,breadth_first_order_travers:84,junk:189,june:[285,286,40,256,42],maitris:5,infinitycrystalofgeneralizedyoungwal:108,accomplish:[253,160],aababaabbbaa:311,find_construction_3_3:[195,251],find_construction_3_5:[195,251],find_construction_3_4:[195,251],sherk:195,linearorderspeci:[161,149,78,284,66],"cl\u00e9ment":253,scientif:310,kolakoski:307,reliabl:286,lcheck:218,auxiliari:[228,21,90,163],richardson:[100,310,7,52,4],invari:[228,286,112,160,115,7,101,317,163,52,269],inverse_matrix:93},objtypes:{"0":"py:module","1":"py:function","2":"py:method","3":"py:class","4":"py:attribute","5":"py:classmethod","6":"py:staticmethod"},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","method","Python method"],"3":["py","class","Python class"],"4":["py","attribute","Python attribute"],"5":["py","classmethod","Python class method"],"6":["py","staticmethod","Python static method"]},filenames:["sage/combinat/matrices/latin","sage/combinat/species/empty_species","sage/combinat/non_decreasing_parking_function","sage/combinat/root_system/all","sage/combinat/sf/llt","sage/combinat/words/morphism","sage/combinat/root_system/root_system","sage/combinat/tableau","sage/combinat/ribbon","sage/combinat/crystals/affinization","sage/combinat/rigged_configurations/bij_infinity","sage/combinat/crystals/littelmann_path","sage/combinat/sf/ns_macdonald","sage/combinat/root_system/type_dual","sage/combinat/sf/schur","sage/combinat/combination","sage/combinat/free_prelie_algebra","sage/combinat/designs/design_catalog","sage/combinat/baxter_permutations","sage/combinat/all","sage/combinat/combinatorial_map","sage/combinat/crystals/tensor_product","sage/combinat/composition","sage/combinat/crystals/fast_crystals","sage/combinat/root_system/associahedron","sage/combinat/matrices/all","sage/combinat/crystals/polyhedral_realization","sage/combinat/ncsym/dual","sage/combinat/posets/__init__","sage/combinat/posets/lattices","sage/combinat/ordered_tree","sage/combinat/tuple","sage/combinat/root_system/type_BC_affine","sage/combinat/debruijn_sequence","sage/combinat/words/shuffle_product","sage/combinat/cluster_algebra_quiver/quiver_mutation_type","sage/combinat/words/word_infinite_datatypes","sage/combinat/subsets_hereditary","sage/combinat/ncsf_qsym/__init__","sage/combinat/posets/elements","sage/combinat/tiling","sage/combinat/species/combinatorial_logarithm","sage/combinat/words/finite_word","sage/combinat/q_analogues","sage/combinat/root_system/type_C_affine","sage/combinat/root_system/type_D_affine","sage/combinat/sf/kfpoly","sage/combinat/quickref","sage/combinat/rooted_tree","sage/combinat/sf/homogeneous","sage/combinat/crystals/spins","sage/combinat/cluster_algebra_quiver/__init__","sage/combinat/knutson_tao_puzzles","sage/combinat/combinat_cython","sage/combinat/species/misc","sage/combinat/rigged_configurations/tensor_product_kr_tableaux_element","sage/combinat/sloane_functions","sage/combinat/designs/designs_pyx","sage/combinat/gelfand_tsetlin_patterns","sage/combinat/words/words","sage/combinat/words/word_options","sage/combinat/symmetric_group_algebra","sage/combinat/degree_sequences","sage/combinat/choose_nk","index","sage/combinat/binary_recurrence_sequences","sage/combinat/species/species","sage/combinat/crystals/all","sage/combinat/sf/sfa","sage/combinat/root_system/cartan_matrix","sage/combinat/root_system/type_folded","sage/combinat/species/product_species","sage/combinat/species/characteristic_species","sage/combinat/root_system/type_B_affine","sage/combinat/subset","sage/combinat/symmetric_group_representations","sage/combinat/rigged_configurations/rc_infinity","sage/combinat/sf/k_dual","sage/combinat/species/generating_series","sage/combinat/ncsym/all","sage/combinat/designs/resolvable_bibd","sage/combinat/matrices/hadamard_matrix","sage/combinat/root_system/hecke_algebra_representation","sage/combinat/sf/hall_littlewood","sage/combinat/abstract_tree","sage/combinat/rigged_configurations/bij_type_A2_odd","sage/combinat/rigged_configurations/__init__","sage/combinat/enumeration_mod_permgroup","sage/combinat/designs/block_design","sage/combinat/root_system/type_marked","sage/combinat/words/suffix_trees","sage/combinat/species/composition_species","sage/combinat/sf/macdonald","sage/combinat/e_one_star","sage/combinat/crystals/catalog_elementary_crystals","sage/combinat/family","sage/combinat/multichoose_nk","sage/combinat/species/all","sage/combinat/lyndon_word","sage/combinat/core","sage/combinat/hall_polynomial","sage/combinat/root_system/integrable_representations","sage/combinat/gray_codes","sage/combinat/rigged_configurations/bij_type_C","sage/combinat/rigged_configurations/bij_type_B","sage/combinat/rigged_configurations/bij_type_A","sage/combinat/crystals/kirillov_reshetikhin","sage/combinat/species/set_species","sage/combinat/crystals/generalized_young_walls","sage/combinat/rigged_configurations/bij_type_D","sage/combinat/designs/all","sage/combinat/subsets_pairwise","sage/combinat/crystals/affine_factorization","sage/combinat/rigged_configurations/bij_abstract_class","sage/combinat/integer_vector_weighted","sage/combinat/ncsym/ncsym","sage/combinat/sf/multiplicative","sage/combinat/ribbon_tableau","sage/combinat/restricted_growth","sage/combinat/root_system/dynkin_diagram","sage/combinat/cluster_algebra_quiver/mutation_type","sage/combinat/algebraic_combinatorics","sage/combinat/skew_tableau","sage/combinat/crystals/catalog_kirillov_reshetikhin","sage/combinat/rigged_configurations/all","sage/combinat/designs/ext_rep","sage/combinat/composition_signed","sage/combinat/crystals/crystals","sage/combinat/parking_functions","sage/combinat/designs/steiner_quadruple_systems","sage/combinat/integer_vector","sage/combinat/designs/difference_matrices","sage/combinat/crystals/alcove_path","sage/combinat/dlx","sage/combinat/catalog_partitions","sage/combinat/matrices/__init__","sage/combinat/words/__init__","sage/combinat/designs/incidence_structures","sage/combinat/split_nk","sage/combinat/crystals/__init__","sage/combinat/ncsf_qsym/ncsf","sage/combinat/free_module","sage/combinat/root_system/root_lattice_realization_algebras","sage/combinat/root_system/root_lattice_realizations","sage/combinat/designs/orthogonal_arrays","sage/combinat/finite_class","sage/combinat/designs/subhypergraph_search","sage/combinat/backtrack","sage/combinat/shuffle","sage/combinat/species/structure","sage/combinat/words/word_datatypes","sage/combinat/subword","sage/combinat/root_system/coxeter_matrix","sage/combinat/rigged_configurations/tensor_product_kr_tableaux","sage/combinat/misc","sage/combinat/root_system/root_space","sage/combinat/sf/__init__","sage/combinat/crystals/catalog_infinity_crystals","sage/combinat/enumerated_sets","sage/combinat/species/cycle_species","sage/combinat/root_system/branching_rules","sage/combinat/species/recursive_species","sage/combinat/ncsf_qsym/combinatorics","sage/combinat/posets/posets","sage/combinat/tamari_lattices","sage/combinat/ncsf_qsym/tutorial","sage/combinat/composition_tableau","sage/combinat/root_system/type_relabel","sage/combinat/rigged_configurations/rigged_partition","sage/combinat/partition_algebra","sage/combinat/root_system/coxeter_group","sage/combinat/combinat","sage/combinat/cyclic_sieving_phenomenon","sage/combinat/designs/covering_design","sage/combinat/sf/classical","module_list","sage/combinat/words/alphabet","sage/combinat/permutation_nk","sage/combinat/derangements","sage/combinat/q_bernoulli","sage/combinat/k_tableau","sage/combinat/rigged_configurations/bij_type_A2_dual","sage/combinat/species/stream","sage/combinat/matrices/dancing_links","sage/combinat/finite_state_machine","sage/combinat/interval_posets","sage/combinat/diagram_algebras","sage/combinat/necklace","sage/combinat/sf/orthotriang","sage/combinat/posets/poset_examples","sage/combinat/finite_state_machine_generators","sage/combinat/crystals/direct_sum","sage/combinat/words/infinite_word","sage/combinat/posets/incidence_algebras","sage/combinat/root_system/type_F_affine","sage/combinat/designs/orthogonal_arrays_build_recursive","sage/combinat/species/sum_species","sage/combinat/rigged_configurations/bij_type_D_twisted","sage/combinat/posets/linear_extensions","sage/combinat/kazhdan_lusztig","sage/combinat/graph_path","sage/combinat/ncsf_qsym/generic_basis_code","sage/combinat/cluster_algebra_quiver/all","sage/combinat/crystals/kyoto_path_model","sage/combinat/root_system/type_G_affine","sage/combinat/root_system/weyl_group","sage/combinat/sidon_sets","sage/combinat/rigged_configurations/kleber_tree","sage/combinat/designs/evenly_distributed_sets","sage/combinat/partitions","sage/combinat/counting","sage/combinat/skew_partition","sage/combinat/alternating_sign_matrix","sage/combinat/sf/all","sage/combinat/combinatorial_algebra","sage/combinat/designs/__init__","sage/combinat/matrices/dlxcpp","sage/combinat/cluster_algebra_quiver/quiver","sage/combinat/root_system/non_symmetric_macdonald_polynomials","sage/combinat/words/all","sage/combinat/rigged_configurations/rigged_configuration_element","sage/combinat/crystals/monomial_crystals","sage/combinat/similarity_class_type","sage/combinat/six_vertex_model","sage/combinat/ribbon_shaped_tableau","sage/combinat/root_system/pieri_factors","sage/combinat/ncsym/__init__","sage/combinat/root_system/type_A_affine","sage/combinat/root_system/weyl_characters","sage/combinat/set_partition","sage/combinat/species/library","sage/combinat/words/word","sage/combinat/root_system/type_I","sage/combinat/root_system/type_H","sage/combinat/root_system/type_G","sage/combinat/root_system/type_F","sage/combinat/root_system/type_E","sage/combinat/root_system/type_D","sage/combinat/root_system/type_C","sage/combinat/root_system/type_B","sage/combinat/root_system/type_A","sage/combinat/root_system/extended_affine_weyl_group","sage/combinat/set_partition_ordered","sage/combinat/root_system/weight_space","sage/combinat/expnums","sage/combinat/posets/all","sage/combinat/species/permutation_species","sage/combinat/designs/difference_family","sage/combinat/dict_addition","sage/combinat/sf/elementary","sage/combinat/root_system/__init__","sage/combinat/designs/orthogonal_arrays_find_recursive","sage/combinat/root_system/type_E_affine","sage/combinat/tutorial","sage/combinat/crystals/elementary_crystals","sage/combinat/rigged_configurations/bij_type_A2_even","sage/combinat/dyck_word","sage/combinat/permutation_cython","sage/combinat/sf/powersum","sage/combinat/root_system/type_affine","sage/combinat/sf/witt","sage/combinat/designs/latin_squares","sage/combinat/rsk","sage/combinat/crystals/catalog","sage/combinat/rigged_configurations/rc_crystal","sage/combinat/crystals/affine","sage/combinat/designs/bibd","sage/combinat/__init__","sage/combinat/designs/database","sage/combinat/integer_list","sage/combinat/species/__init__","sage/combinat/words/word_char","sage/combinat/ncsf_qsym/qsym","sage/combinat/species/subset_species","sage/combinat/ncsf_qsym/all","sage/combinat/crystals/highest_weight_crystals","sage/combinat/root_system/plot","sage/combinat/root_system/weight_lattice_realizations","sage/combinat/designs/group_divisible_designs","sage/combinat/cluster_algebra_quiver/mutation_class","sage/combinat/sf/dual","sage/combinat/rigged_configurations/kr_tableaux","sage/combinat/vector_partition","sage/combinat/sf/sf","sage/combinat/species/linear_order_species","sage/combinat/binary_tree","sage/combinat/permutation","sage/combinat/affine_permutation","sage/combinat/yang_baxter_graph","sage/combinat/species/series","sage/combinat/crystals/letters","sage/combinat/root_system/cartan_type","sage/combinat/rigged_configurations/bijection","sage/combinat/partition_tuple","sage/combinat/species/functorial_composition_species","sage/combinat/root_system/ambient_space","sage/combinat/crystals/infinity_crystals","sage/combinat/ncsym/bases","sage/combinat/sf/new_kschur","sage/combinat/cartesian_product","sage/combinat/shard_order","sage/combinat/tableau_tuple","sage/combinat/root_system/type_reducible","sage/combinat/ranker","sage/combinat/posets/hasse_diagram","sage/combinat/descent_algebra","sage/combinat/partition","sage/combinat/words/word_generators","sage/combinat/perfect_matching","sage/combinat/sf/jack","sage/combinat/rigged_configurations/rigged_configurations","sage/combinat/words/paths","sage/combinat/words/abstract_word","sage/combinat/root_system/fundamental_group","sage/combinat/schubert_polynomial","sage/combinat/integer_matrices","sage/combinat/species/series_order","sage/combinat/integer_vectors_mod_permgroup","sage/combinat/species/partition_species","sage/combinat/cluster_algebra_quiver/cluster_seed","sage/combinat/tools","sage/combinat/output","sage/combinat/sf/monomial"],titles:["Latin Squares","Empty Species","Non-Decreasing Parking Functions","Root system features that are imported by default in the interpreter namespace","LLT symmetric functions","Word morphisms/substitutions","Root systems","Tableaux","Ribbons","Affinization Crystals","Bijection between rigged configurations for <span class=\"math\">\\(B(\\infty)\\)</span> and marginally large tableaux","Littelmann paths","Non-symmetric Macdonald Polynomials","Root system data for dual Cartan types","Schur symmetric functions","Combinations","Free Pre-Lie Algebras","Catalog of designs","Baxter permutations","Combinatorics features that are imported by default in the interpreter namespace","Combinatorial maps","Tensor Products of Crystals","Integer compositions","Fast Rank Two Crystals","Associahedron","Combinatorics on matrix features that are imported by default in the interpreter namespace","Polyhedral Realization of <span class=\"math\">\\(B(\\infty)\\)</span>","Dual Symmetric Functions in Non-Commuting Variables","Posets","Finite semilattices and lattices","Ordered Rooted Trees","Tuples","Root system data for type BC affine","De Bruijn sequences","Shuffle product of words","Quiver mutation types","Datatypes for words defined by iterators and callables","Subsets satisfying a hereditary property","Non-Commutative Symmetric Functions and Quasi-Symmetric Functions","Elements of posets, lattices, semilattices, etc.","Tiling Solver","Combinatorial Logarithm","Finite word","q-Analogues","Root system data for (untwisted) type C affine","Root system data for (untwisted) type D affine","Kostka-Foulkes Polynomials","Combinatorics quickref","Rooted (Unordered) Trees","Homogeneous symmetric functions","Spin Crystals","Cluster Algebras and Quivers","Knutson-Tao Puzzles","Fast computation of combinatorial functions (Cython + mpz).","Miscellaneous Functions","Tensor Product of Kirillov-Reshetikhin Tableaux Elements","Functions that compute some of the sequences in Sloane&#8217;s tables","Cython functions for combinatorial designs","Gelfand-Tsetlin Patterns","Combinatorial classes of words.","User-customizable options for words","Symmetric Group Algebra","Degree sequences","Deprecated combinations","Combinatorics","Binary Recurrence Sequences.","Combinatorial Species","Crystal features that are imported by default in the interpreter namespace","Symmetric Functions","Cartan matrices","Root system data for folded Cartan types","Sum species","Characteristic Species","Root system data for (untwisted) type B affine","Subsets","Representations of the Symmetric Group","Rigged Configurations of <span class=\"math\">\\(\\mathcal{B}(\\infty)\\)</span>","Quotient of symmetric function space by ideal generated by Hall-Littlewood symmetric functions","Generating Series","Features that are imported by default in the interpreter namespace","Resolvable Balanced Incomplete Block Design (RBIBD)","Hadamard matrices","Hecke algebra representations","Hall-Littlewood Polynomials","Abstract Recursive Trees","Bijection classes for type <span class=\"math\">\\(A_{2n-1}^{(2)}\\)</span>.","Rigged Configurations","Tools for enumeration modulo the action of a permutation group","Block designs","Root system data for Cartan types with marked nodes","Suffix Tries and Suffix Trees","Composition species","Macdonald Polynomials","Substitutions over unit cube faces (Rauzy fractals)","Catalog Of Elementary Crystals","Families","Low-level multichoose","Combinatorial species features that are imported by default in the interpreter namespace","Lyndon words","Cores","Hall Polynomials","Integrable Representations of Affine Lie Algebras","Gray codes","Bijection classes for type <span class=\"math\">\\(C_n^{(1)}\\)</span>.","Bijection classes for type <span class=\"math\">\\(B_n^{(1)}\\)</span>.","Bijection classes for type <span class=\"math\">\\(A_n^{(1)}\\)</span>","Kirillov-Reshetikhin Crystals","Set Species","Crystals of Generalized Young Walls","Bijection classes for type <span class=\"math\">\\(D_n^{(1)}\\)</span>","Combinatorial design features that are imported by default in the interpreter namespace","Subsets whose elements satisfy a predicate pairwise","Affine factorization crystal of type <span class=\"math\">\\(A\\)</span>","Abstract classes for the rigged configuration bijections","Weighted Integer Vectors","Symmetric Functions in Non-Commuting Variables","Multiplicative symmetric functions","Ribbon Tableaux","Restricted growth arrays","Dynkin diagrams","This file contains helper functions for detecting the mutation type of","Algebraic combinatorics","Skew Tableaux","Catalog Of Crystal Models For Kirillov-Reshetikhin Crystals","Features that are imported by default in the interpreter namespace","External Representations of Block Designs","Signed Compositions","An introduction to crystals","Parking Functions","Steiner Quadruple Systems","(Non-negative) Integer vectors","Difference Matrices","Alcove paths","Exact Cover Problem via Dancing Links","Enumerated sets of partitions, tableaux, ...","Combinatorics on matrices","Words","Incidence structures (i.e. hypergraphs, i.e. set systems)","Derecated splits","Crystals","Non-Commutative Symmetric Functions","Free modules","Group algebras of root lattice realizations","Root lattice realizations","Orthogonal arrays (OA)","Finite combinatorial classes","Hypergraph isomorphic copy search","Backtracking","Shuffle product of iterables","Species structures","Datatypes for finite words","Subwords","Coxeter matrices","Tensor Product of Kirillov-Reshetikhin Tableaux","Miscellaneous","Root lattices and root spaces","Symmetric Functions","Catalog Of Crystal Models For <span class=\"math\">\\(B(\\infty)\\)</span>","Enumerated sets and combinatorial objects","Cycle Species","Branching Rules","Recursive Species","Common combinatorial tools","Finite posets","Generalized Tamari lattices","Introduction to Quasisymmetric Functions","Composition Tableaux","Root system data for relabelled Cartan types","Rigged Partitions","Partition/Diagram Algebras","Coxeter Groups","Combinatorial Functions","Cyclic sieving phenomenon","Covering designs: coverings of <span class=\"math\">\\(t\\)</span>-element subsets of a <span class=\"math\">\\(v\\)</span>-set by <span class=\"math\">\\(k\\)</span>-sets","Classical symmetric functions.","Comprehensive Module list","Alphabet","Deprecated low-level permutations","Derangements","<span class=\"math\">\\(q\\)</span>-Bernoulli Numbers","Strong and weak tableaux","Bijection classes for type <span class=\"math\">\\(A_{2n}^{(2)\\dagger}\\)</span>.","Streams or Infinite Arrays","Dancing Links internal pyx code","Finite State Machines, Automata, Transducers","Tamari Interval-posets","Diagram and Partition Algebras","Necklaces","Symmetric functions defined by orthogonality and triangularity.","A catalog of posets and lattices.","Common Transducers (Finite State Machines Generators)","Direct Sum of Crystals","Infinite word","Incidence Algebras","Root system data for (untwisted) type F affine","Orthogonal arrays (build recursive constructions)","Sum species","Bijection classes for type <span class=\"math\">\\(D_{n+1}^{(2)}\\)</span>.","Linear Extensions of Posets","Kazhdan-Lusztig Polynomials","Paths in Directed Acyclic Graphs","Generic code for bases","Cluster algebra and quivers features that are imported by default in the interpreter namespace","Kyoto Path Model for Affine Highest Weight Crystals","Root system data for (untwisted) type G affine","Weyl Groups","Sidon sets and their generalizations, Sidon <span class=\"math\">\\(g\\)</span>-sets","Kleber Trees","Evenly distributed sets in finite fields","Number of partitions of an integer","Counting","Skew Partitions","Alternating Sign Matrices","Symmetric function features that are imported by default in the interpreter namespace","Combinatorial Algebras","Combinatorial Designs and Incidence Structures","Dancing links C++ wrapper","Quiver","Nonsymmetric Macdonald polynomials","Word features that are imported by default in the interpreter namespace","Rigged Configuration Elements","Crystals of Modified Nakajima Monomials","Similarity class types of matrices with entries in a finite field","Six Vertex Model","Ribbon Shaped Tableaux","Pieri Factors","Symmetric Functions in Non-Commuting Variables","Root system data for (untwisted) type A affine","Weyl Character Rings","Set Partitions","Examples of Combinatorial Species","Word classes","Root system data for type I","Root system data for type H","Root system data for type G","Root system data for type F","Root system data for type E","Root system data for type D","Root system data for type C","Root system data for type B","Root system data for type A","Extended Affine Weyl Groups","Ordered Set Partitions","Weight lattices and weight spaces","Compute Bell and Uppuluri-Carpenter numbers","Poset features that are imported by default in the interpreter namespace","Permutation species","Difference families","Pointwise addition of dictionaries","Elementary symmetric functions","Root Systems","Orthogonal arrays (find recursive constructions)","Root system data for (untwisted) type E affine","Introduction to combinatorics in Sage","Elementary Crystals","Bijection classes for type <span class=\"math\">\\(A_{2n}^{(2)}\\)</span>.","Dyck Words","Permutations (Cython file)","Power sum symmetric functions","Root system data for affine Cartan types","Witt symmetric functions","Mutually Orthogonal Latin Squares (MOLS)","Robinson-Schensted-Knuth correspondence","Catalog Of Crystals","Crystal of Rigged Configurations","Affine Crystals","Balanced Incomplete Block Designs (BIBD)","Combinatorics","Database of small combinatorial designs","Enumerated set of lists of integers with constraints, in inverse lexicographic order","Combinatorial Species","Fast word datatype using an array of unsigned char.","Quasisymmetric functions","Subset Species","Features that are imported by default in the interpreter namespace","Highest weight crystals","Tutorial: visualizing root systems","Weight lattice realizations","Group-Divisible Designs (GDD)","mutation_class","Generic dual bases symmetric functions","Kirillov-Reshetikhin Tableaux","Vector Partitions","Symmetric functions, with their multiple realizations","Linear-order Species","Binary Trees","Permutations","Affine Permutations","Yang-Baxter Graphs","Lazy Power Series","Crystals of letters","Cartan types","Bijection between rigged configurations and KR tableaux","Partition tuples","Functorial composition species","Ambient lattices and ambient spaces","<span class=\"math\">\\(\\mathcal{B}(\\infty)\\)</span> Crystals of Tableaux in Nonexceptional Types and <span class=\"math\">\\(G_2\\)</span>","Bases for <span class=\"math\">\\(NCSym\\)</span>.","<span class=\"math\">\\(k\\)</span>-Schur Functions","Cartesian Products","Shard intersection order","TableauTuples","Root system data for reducible Cartan types","Rankers","Hasse diagrams of posets","Descent Algebras","Integer partitions","A collection of constructors of common words","Perfect matchings","Jack Symmetric Functions","Rigged Configurations","Word paths","Abstract word (finite or infinite)","Fundamental Group of an Extended Affine Weyl Group","Schubert Polynomials","Counting, generating, and manipulating non-negative integer matrices","Series Order","Integer vectors modulo the action of a permutation group","Partition Species","ClusterSeed","Tools","Output functions","Monomial symmetric functions"],objects:{"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations":{super_categories:[241,2,1,""],ElementMethods:[241,3,1,""],ParentMethods:[241,3,1,""]},"sage.combinat.species.composition_species.CompositionSpecies":{weight_ring:[91,2,1,""]},"sage.combinat.sloane_functions.A000009":{list:[56,2,1,""],cf:[56,2,1,""]},"sage.combinat.root_system.weyl_group.ClassicalWeylSubgroup":{weyl_group:[205,2,1,""],simple_reflections:[205,2,1,""],cartan_type:[205,2,1,""]},"sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement":{plot:[132,2,1,""],phi:[132,2,1,""],e:[132,2,1,""],weight:[132,2,1,""],f:[132,2,1,""],epsilon:[132,2,1,""],is_admissible:[132,2,1,""],integer_sequence:[132,2,1,""]},"sage.combinat.ordered_tree":{OrderedTrees_all:[30,3,1,""],LabelledOrderedTrees:[30,3,1,""],OrderedTrees:[30,3,1,""],OrderedTree:[30,3,1,""],LabelledOrderedTree:[30,3,1,""],OrderedTrees_size:[30,3,1,""]},"sage.combinat.words.paths.WordPaths_all":{letters_to_steps:[311,2,1,""],vector_space:[311,2,1,""]},"sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ElementMethods":{acted_upon:[142,2,1,""],expand:[142,2,1,""]},"sage.combinat.yang_baxter_graph.YangBaxterGraph_generic":{plot:[288,2,1,""],relabel_vertices:[288,2,1,""],vertices:[288,2,1,""],edges:[288,2,1,""],vertex_relabelling_dict:[288,2,1,""],successors:[288,2,1,""],root:[288,2,1,""],relabel_edges:[288,2,1,""]},"sage.combinat.sf.monomial":{SymmetricFunctionAlgebra_monomial:[322,3,1,""]},"sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC.Element":{weight:[76,2,1,""]},"sage.combinat.crystals.generalized_young_walls.InfinityCrystalOfGeneralizedYoungWalls":{weight_lattice_realization:[108,2,1,""],Element:[108,4,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_BnElement":{f0:[106,2,1,""],epsilon0:[106,2,1,""],e0:[106,2,1,""],phi0:[106,2,1,""]},"sage.combinat.rigged_configurations.tensor_product_kr_tableaux":{HighestWeightTensorKRT:[153,3,1,""],HighestWeightTensorProductOfKirillovReshetikhinTableaux:[153,1,1,""],TensorProductOfKirillovReshetikhinTableaux:[153,3,1,""]},"sage.combinat.crystals.elementary_crystals.ComponentCrystal":{cardinality:[254,2,1,""],Element:[254,3,1,""]},"sage.combinat.tableau_tuple.StandardTableauTuples_level_size":{an_element:[301,2,1,""],cardinality:[301,2,1,""]},"sage.combinat.sf.llt.LLT_generic":{level:[4,2,1,""],llt_family:[4,2,1,""],Element:[4,3,1,""]},"sage.combinat.lyndon_word.LyndonWords_evaluation":{cardinality:[98,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsAkhalf_k":{Element:[169,4,1,""]},"sage.combinat.crystals.monomial_crystals":{CrystalOfNakajimaMonomials:[221,3,1,""],NakajimaYMonomial:[221,3,1,""],CrystalOfNakajimaMonomialsElement:[221,3,1,""],InfinityCrystalOfNakajimaMonomials:[221,3,1,""],NakajimaAMonomial:[221,3,1,""]},"sage.combinat.species.characteristic_species":{CharacteristicSpecies:[72,3,1,""],EmptySetSpecies_class:[72,4,1,""],CharacteristicSpeciesStructure:[72,3,1,""],SingletonSpecies_class:[72,4,1,""],EmptySetSpecies:[72,3,1,""],CharacteristicSpecies_class:[72,4,1,""],SingletonSpecies:[72,3,1,""]},"sage.combinat.root_system":{type_I:[232,0,0,"-"],all:[3,0,0,"-"],type_H:[233,0,0,"-"],coxeter_matrix:[152,0,0,"-"],cartan_matrix:[69,0,0,"-"],type_BC_affine:[32,0,0,"-"],associahedron:[24,0,0,"-"],type_reducible:[302,0,0,"-"],fundamental_group:[313,0,0,"-"],"__init__":[250,0,0,"-"],plot:[276,0,0,"-"],extended_affine_weyl_group:[241,0,0,"-"],type_relabel:[167,0,0,"-"],type_dual:[13,0,0,"-"],type_folded:[70,0,0,"-"],pieri_factors:[225,0,0,"-"],type_A_affine:[227,0,0,"-"],type_C_affine:[44,0,0,"-"],root_lattice_realizations:[143,0,0,"-"],root_space:[155,0,0,"-"],root_system:[6,0,0,"-"],type_C:[238,0,0,"-"],weight_space:[243,0,0,"-"],type_D_affine:[45,0,0,"-"],coxeter_group:[170,0,0,"-"],weight_lattice_realizations:[277,0,0,"-"],root_lattice_realization_algebras:[142,0,0,"-"],type_affine:[259,0,0,"-"],hecke_algebra_representation:[82,0,0,"-"],integrable_representations:[101,0,0,"-"],dynkin_diagram:[119,0,0,"-"],type_B_affine:[73,0,0,"-"],type_G_affine:[204,0,0,"-"],type_F:[235,0,0,"-"],type_marked:[89,0,0,"-"],type_B:[239,0,0,"-"],type_A:[240,0,0,"-"],type_G:[234,0,0,"-"],weyl_characters:[228,0,0,"-"],type_E:[236,0,0,"-"],type_E_affine:[252,0,0,"-"],non_symmetric_macdonald_polynomials:[218,0,0,"-"],type_D:[237,0,0,"-"],cartan_type:[291,0,0,"-"],weyl_group:[205,0,0,"-"],ambient_space:[295,0,0,"-"],type_F_affine:[194,0,0,"-"],branching_rules:[160,0,0,"-"]},"sage.combinat.root_system.type_dual.CartanType":{dynkin_diagram:[13,2,1,""],ascii_art:[13,2,1,""],dual:[13,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1.Element":{f0:[106,2,1,""],epsilon0:[106,2,1,""],e0:[106,2,1,""],coordinates:[106,2,1,""],phi0:[106,2,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.homogeneous.Element":{to_symmetric_function:[115,2,1,""],omega:[115,2,1,""]},"sage.combinat.q_analogues":{gaussian_multinomial:[43,1,1,""],q_subgroups_of_abelian_group:[43,1,1,""],q_int:[43,1,1,""],qt_catalan_number:[43,1,1,""],q_jordan:[43,1,1,""],q_binomial:[43,1,1,""],q_factorial:[43,1,1,""],q_multinomial:[43,1,1,""],gaussian_binomial:[43,1,1,""],q_catalan_number:[43,1,1,""]},"sage.combinat.similarity_class_type":{fq:[222,1,1,""],ext_orbit_centralizers:[222,1,1,""],SimilarityClassTypes:[222,3,1,""],PrimarySimilarityClassTypes:[222,3,1,""],centralizer_algebra_dim:[222,1,1,""],dictionary_from_generator:[222,1,1,""],ext_orbits:[222,1,1,""],matrix_similarity_classes:[222,1,1,""],matrix_centralizer_cardinalities:[222,1,1,""],matrix_similarity_classes_length_two:[222,1,1,""],SimilarityClassType:[222,3,1,""],centralizer_group_cardinality:[222,1,1,""],primitives:[222,1,1,""],matrix_centralizer_cardinalities_length_two:[222,1,1,""],input_parsing:[222,1,1,""],order_of_general_linear_group:[222,1,1,""],PrimarySimilarityClassType:[222,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1":{from_coordinates:[106,2,1,""],classical_decomposition:[106,2,1,""],Element:[106,3,1,""]},"sage.combinat.root_system.cartan_type.CartanType_standard_finite":{coxeter_number:[291,2,1,""],affine:[291,2,1,""],index_set:[291,2,1,""],opposition_automorphism:[291,2,1,""],dual_coxeter_number:[291,2,1,""],rank:[291,2,1,""],type:[291,2,1,""]},"sage.combinat.sloane_functions.Sloane":{trait_names:[56,2,1,""]},"sage.combinat.designs.incidence_structures":{IncidenceStructureFromMatrix:[137,1,1,""],IncidenceStructure:[137,3,1,""]},"sage.combinat.root_system.dynkin_diagram":{precheck:[119,1,1,""],DynkinDiagram_class:[119,3,1,""],DynkinDiagram:[119,1,1,""]},"sage.combinat.permutation.Permutation":{recoils:[286,2,1,""],show:[286,2,1,""],idescents:[286,2,1,""],to_alternating_sign_matrix:[286,2,1,""],binary_search_tree:[286,2,1,""],longest_increasing_subsequence_length:[286,2,1,""],inverse:[286,2,1,""],has_pattern:[286,2,1,""],retract_okounkov_vershik:[286,2,1,""],imajor_index:[286,2,1,""],decreasing_runs:[286,2,1,""],dict:[286,2,1,""],permutohedron_smaller:[286,2,1,""],"_left_to_right_multiply_on_right":[286,2,1,""],permutohedron_succ:[286,2,1,""],major_index:[286,2,1,""],bruhat_lequal:[286,2,1,""],to_lehmer_code:[286,2,1,""],fixed_points:[286,2,1,""],runs:[286,2,1,""],increasing_tree_shape:[286,2,1,""],permutohedron_join:[286,2,1,""],inversions:[286,2,1,""],bruhat_smaller:[286,2,1,""],cycle_string:[286,2,1,""],ishift:[286,2,1,""],reduced_words:[286,2,1,""],saliances:[286,2,1,""],increasing_tree:[286,2,1,""],robinson_schensted:[286,2,1,""],left_action_product:[286,2,1,""],descents_composition:[286,2,1,""],sign:[286,2,1,""],idescents_signature:[286,2,1,""],simion_schmidt:[286,2,1,""],to_permutation_group_element:[286,2,1,""],reduced_word:[286,2,1,""],number_of_peaks:[286,2,1,""],number_of_noninversions:[286,2,1,""],descent_polynomial:[286,2,1,""],number_of_inversions:[286,2,1,""],cycle_tuples:[286,2,1,""],cycle_type:[286,2,1,""],right_permutohedron_interval_iterator:[286,2,1,""],permutohedron_lequal:[286,2,1,""],complement:[286,2,1,""],forget_cycles:[286,2,1,""],"_left_to_right_multiply_on_left":[286,2,1,""],to_inversion_vector:[286,2,1,""],bruhat_pred:[286,2,1,""],bruhat_greater:[286,2,1,""],bruhat_succ_iterator:[286,2,1,""],reverse:[286,2,1,""],bruhat_pred_iterator:[286,2,1,""],to_matrix:[286,2,1,""],iswitch:[286,2,1,""],length:[286,2,1,""],signature:[286,2,1,""],action:[286,2,1,""],right_action_product:[286,2,1,""],rank:[286,2,1,""],retract_direct_product:[286,2,1,""],recoils_composition:[286,2,1,""],bruhat_succ:[286,2,1,""],sylvester_class:[286,2,1,""],permutohedron_pred:[286,2,1,""],descents:[286,2,1,""],size:[286,2,1,""],foata_bijection:[286,2,1,""],retract_plain:[286,2,1,""],number_of_saliances:[286,2,1,""],next:[286,2,1,""],shifted_shuffle:[286,2,1,""],permutation_poset:[286,2,1,""],number_of_fixed_points:[286,2,1,""],number_of_idescents:[286,2,1,""],prev:[286,2,1,""],bruhat_inversions:[286,2,1,""],RS_partition:[286,2,1,""],reduced_word_lexmin:[286,2,1,""],longest_increasing_subsequences:[286,2,1,""],right_permutohedron_interval:[286,2,1,""],to_tableau_by_shape:[286,2,1,""],number_of_descents:[286,2,1,""],permutohedron_greater:[286,2,1,""],pattern_positions:[286,2,1,""],shifted_concatenation:[286,2,1,""],right_tableau:[286,2,1,""],to_lehmer_cocode:[286,2,1,""],avoids:[286,2,1,""],binary_search_tree_shape:[286,2,1,""],permutohedron_meet:[286,2,1,""],to_major_code:[286,2,1,""],peaks:[286,2,1,""],to_cycles:[286,2,1,""],destandardize:[286,2,1,""],left_tableau:[286,2,1,""],weak_excedences:[286,2,1,""],bruhat_inversions_iterator:[286,2,1,""],is_even:[286,2,1,""],hyperoctahedral_double_coset_type:[286,2,1,""],noninversions:[286,2,1,""],number_of_recoils:[286,2,1,""],remove_extra_fixed_points:[286,2,1,""]},"sage.combinat.composition_tableau.CompositionTableauxBacktracker":{get_next_pos:[166,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsXkElement":{check:[169,2,1,""]},"sage.combinat.rooted_tree.RootedTrees_all":{unlabelled_trees:[48,2,1,""],leaf:[48,2,1,""],labelled_trees:[48,2,1,""],Element:[48,4,1,""]},"sage.combinat.permutation.Permutations_nk.Element":{check:[286,2,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element_dual":{retract:[290,2,1,""],lift:[290,2,1,""],e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.designs.subhypergraph_search":{SubHypergraphSearch:[146,3,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions":{Phi:[140,3,1,""],Psi:[140,3,1,""],Complete:[140,3,1,""],Monomial:[140,3,1,""],MultiplicativeBasesOnPrimitiveElements:[140,3,1,""],Elementary:[140,3,1,""],Bases:[140,3,1,""],Immaculate:[140,3,1,""],dual:[140,2,1,""],dualQuasisymmetric_Schur:[140,3,1,""],MultiplicativeBases:[140,3,1,""],MultiplicativeBasesOnGroupLikeElements:[140,3,1,""],Ribbon:[140,3,1,""],a_realization:[140,2,1,""]},"sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods":{demazure_operators:[142,2,1,""],demazure_lusztig_operator_on_basis:[142,2,1,""],classical:[142,2,1,""],from_polynomial:[142,2,1,""],demazure_lusztig_operator_on_classical_on_basis:[142,2,1,""],q_project:[142,2,1,""],T0_check_on_basis:[142,2,1,""],divided_difference_on_basis:[142,2,1,""],twisted_demazure_lusztig_operators:[142,2,1,""],twisted_demazure_lusztig_operator_on_basis:[142,2,1,""],demazure_lusztig_operators:[142,2,1,""],some_elements:[142,2,1,""],isobaric_divided_difference_on_basis:[142,2,1,""],q_project_on_basis:[142,2,1,""],cartan_type:[142,2,1,""],demazure_lusztig_operators_on_classical:[142,2,1,""]},"sage.combinat.species.product_species.ProductSpecies":{weight_ring:[71,2,1,""]},"sage.combinat.combinat.MapCombinatorialClass":{an_element:[171,2,1,""],cardinality:[171,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0":{from_translation:[241,2,1,""],from_classical_weyl:[241,2,1,""],S0:[241,2,1,""],simple_reflections:[241,2,1,""],simple_reflection:[241,2,1,""]},"sage.combinat.posets.posets.FinitePosets_n":{cardinality:[163,2,1,""]},"sage.combinat.sloane_functions.A005101":{list:[56,2,1,""]},"sage.combinat.k_tableau.WeakTableau_bounded":{from_core_tableau:[180,5,1,""],to_core_tableau:[180,2,1,""],k_charge:[180,2,1,""],shape_bounded:[180,2,1,""],shape_core:[180,2,1,""],check:[180,2,1,""]},"sage.combinat.set_partition.SetPartitions_set":{base_set:[229,2,1,""],cardinality:[229,2,1,""],base_set_cardinality:[229,2,1,""]},"sage.combinat.root_system.cartan_type.CartanType_simple":{is_irreducible:[291,2,1,""]},"sage.combinat.root_system.type_affine":{AmbientSpace:[259,3,1,""]},"sage.combinat.sloane_functions.A000213":{list:[56,2,1,""]},"sage.combinat.crystals.spins":{CrystalOfSpins:[50,1,1,""],Spin_crystal_type_D_element:[50,3,1,""],CrystalOfSpinsPlus:[50,1,1,""],GenericCrystalOfSpins:[50,3,1,""],Spin_crystal_type_B_element:[50,3,1,""],CrystalOfSpinsMinus:[50,1,1,""],Spin:[50,3,1,""]},"sage.combinat.set_partition_ordered.OrderedSetPartition":{check:[242,2,1,""],to_composition:[242,2,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_123":{cardinality:[286,2,1,""]},"sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra":{Element:[193,3,1,""],one_basis:[193,2,1,""],lift:[193,2,1,""],mobius:[193,2,1,""],delta:[193,2,1,""],some_elements:[193,2,1,""],zeta:[193,2,1,""],poset:[193,2,1,""]},"sage.combinat.knutson_tao_puzzles.PuzzlePiece":{color:[52,2,1,""],edge_color:[52,2,1,""],border:[52,2,1,""],edge_label:[52,2,1,""]},"sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous":{coproduct_on_generators:[49,2,1,""],Element:[49,3,1,""]},"sage.combinat.descent_algebra.DescentAlgebra.D":{product_on_basis:[305,2,1,""],one_basis:[305,2,1,""],to_B_basis:[305,2,1,""],to_symmetric_group_algebra_on_basis:[305,2,1,""]},"sage.combinat.root_system.weyl_characters":{WeightRing:[228,3,1,""],irreducible_character_freudenthal:[228,1,1,""],WeylCharacterRing:[228,3,1,""]},"sage.combinat.words.word_generators":{LowerChristoffelWord:[307,3,1,""],WordGenerator:[307,3,1,""]},"sage.combinat.descent_algebra.DescentAlgebra.I":{product_on_basis:[305,2,1,""],one_basis:[305,2,1,""],idempotent:[305,2,1,""],to_B_basis:[305,2,1,""],one:[305,2,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_type_B_affine":{maximal_elements_combinatorial:[225,2,1,""],stanley_symm_poly_weight:[225,2,1,""]},"sage.combinat.permutation.Permutations_set.Element":{check:[286,2,1,""]},"sage.combinat.permutation.CyclicPermutationsOfPartition":{list:[286,2,1,""],iterator:[286,2,1,""],Element:[286,3,1,""]},"sage.combinat.crystals.crystals":{CrystalBacktracker:[127,3,1,""]},"sage.combinat.root_system.weight_lattice_realizations":{WeightLatticeRealizations:[277,3,1,""]},"sage.combinat.alternating_sign_matrix.AlternatingSignMatrix":{ASM_compatible:[212,2,1,""],to_monotone_triangle:[212,2,1,""],left_key:[212,2,1,""],to_permutation:[212,2,1,""],rotate_cw:[212,2,1,""],transpose:[212,2,1,""],ASM_compatible_bigger:[212,2,1,""],inversion_number:[212,2,1,""],number_negative_ones:[212,2,1,""],rotate_ccw:[212,2,1,""],ASM_compatible_smaller:[212,2,1,""],gyration_orbit:[212,2,1,""],height_function:[212,2,1,""],left_key_as_permutation:[212,2,1,""],to_matrix:[212,2,1,""],is_permutation:[212,2,1,""],corner_sum_matrix:[212,2,1,""],to_dyck_word:[212,2,1,""],gyration:[212,2,1,""],to_semistandard_tableau:[212,2,1,""]},"sage.combinat.root_system.type_A_affine":{CartanType:[227,3,1,""]},"sage.combinat.root_system.branching_rules":{branching_rule_from_plethysm:[160,1,1,""],get_branching_rule:[160,1,1,""],maximal_subgroups:[160,1,1,""],BranchingRule:[160,3,1,""],branch_weyl_character:[160,1,1,""],branching_rule:[160,1,1,""]},"sage.combinat.diagram_algebras.PropagatingIdeal":{one_basis:[186,2,1,""],Element:[186,3,1,""]},"sage.combinat.sloane_functions.A005100":{list:[56,2,1,""]},"sage.combinat.ribbon_tableau.MultiSkewTableau":{inversions:[117,2,1,""],shape:[117,2,1,""],weight:[117,2,1,""],inversion_pairs:[117,2,1,""],size:[117,2,1,""]},"sage.combinat.rigged_configurations.bij_type_D_twisted":{KRTToRCBijectionTypeDTwisted:[197,3,1,""],RCToKRTBijectionTypeDTwisted:[197,3,1,""]},"sage.combinat.root_system.root_lattice_realization_algebras.Algebras":{ElementMethods:[142,3,1,""],ParentMethods:[142,3,1,""]},"sage.combinat.subset":{SubsetsSorted:[74,3,1,""],Subsets:[74,1,1,""],dict_to_list:[74,1,1,""],Subsets_s:[74,3,1,""],Subsets_sk:[74,3,1,""],SubMultiset_sk:[74,3,1,""],SubMultiset_s:[74,3,1,""],list_to_dict:[74,1,1,""]},"sage.combinat.subset.Subsets_s":{underlying_set:[74,2,1,""],last:[74,2,1,""],element_class:[74,4,1,""],an_element:[74,2,1,""],rank:[74,2,1,""],unrank:[74,2,1,""],random_element:[74,2,1,""],cardinality:[74,2,1,""],first:[74,2,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ParentMethods":{Eulerian:[272,2,1,""],from_polynomial:[272,2,1,""]},"sage.combinat.rigged_configurations.rigged_partition":{RiggedPartitionTypeB:[168,3,1,""],RiggedPartition:[168,3,1,""]},"sage.combinat.schubert_polynomial":{SchubertPolynomialRing:[314,1,1,""],SchubertPolynomialRing_xbasis:[314,3,1,""],is_SchubertPolynomial:[314,1,1,""],SchubertPolynomial_class:[314,3,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KRTableauxBn":{from_kirillov_reshetikhin_crystal:[281,2,1,""],Element:[281,4,1,""]},"sage.combinat.sloane_functions.A051959":{g:[56,2,1,""]},"sage.combinat.binary_tree.BinaryTree":{is_perfect:[285,2,1,""],tamari_pred:[285,2,1,""],show:[285,2,1,""],over:[285,2,1,""],left_right_symmetry:[285,2,1,""],is_full:[285,2,1,""],sylvester_class:[285,2,1,""],to_ordered_tree_left_branch:[285,2,1,""],tamari_greater:[285,2,1,""],to_ordered_tree_right_branch:[285,2,1,""],to_dyck_word_tamari:[285,2,1,""],check:[285,2,1,""],right_rotate:[285,2,1,""],tamari_smaller:[285,2,1,""],tamari_meet:[285,2,1,""],graph:[285,2,1,""],to_poset:[285,2,1,""],canonical_labelling:[285,2,1,""],to_dyck_word:[285,2,1,""],under:[285,2,1,""],left_rotate:[285,2,1,""],single_edge_cut_shapes:[285,2,1,""],make_node:[285,2,1,""],canopee:[285,2,1,""],to_132_avoiding_permutation:[285,2,1,""],in_order_traversal:[285,2,1,""],as_ordered_tree:[285,2,1,""],to_312_avoiding_permutation:[285,2,1,""],is_empty:[285,2,1,""],tamari_interval:[285,2,1,""],to_undirected_graph:[285,2,1,""],tamari_lequal:[285,2,1,""],tamari_succ:[285,2,1,""],left_border_symmetry:[285,2,1,""],make_leaf:[285,2,1,""],in_order_traversal_iter:[285,2,1,""],tamari_join:[285,2,1,""],q_hook_length_fraction:[285,2,1,""],is_complete:[285,2,1,""]},"sage.combinat.permutation.Permutations_mset":{cardinality:[286,2,1,""],Element:[286,3,1,""]},"sage.combinat.root_system.type_dual.CartanType_finite":{AmbientSpace:[13,4,1,""]},"sage.combinat.root_system.weyl_characters.WeightRing":{parent:[228,2,1,""],space:[228,2,1,""],positive_roots:[228,2,1,""],weyl_character_ring:[228,2,1,""],simple_roots:[228,2,1,""],Element:[228,3,1,""],fundamental_weights:[228,2,1,""],one_basis:[228,2,1,""],product_on_basis:[228,2,1,""],some_elements:[228,2,1,""],wt_repr:[228,2,1,""],cartan_type:[228,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ParentMethods":{to_ncsym:[140,2,1,""],to_ncsym_on_basis:[140,2,1,""],to_symmetric_function:[140,2,1,""],immaculate_function:[140,2,1,""],to_symmetric_function_on_basis:[140,2,1,""]},"sage.combinat.subword.Subwords_w":{cardinality:[151,2,1,""],last:[151,2,1,""],random_element:[151,2,1,""],first:[151,2,1,""]},"sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement":{get_vacancy_number:[220,2,1,""],phi:[220,2,1,""],e:[220,2,1,""],f:[220,2,1,""],epsilon:[220,2,1,""],check:[220,2,1,""],partition_rigging_lists:[220,2,1,""],get_vacancy_numbers:[220,2,1,""],nu:[220,2,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code":{AlgebraMorphism:[201,3,1,""],GradedModulesWithInternalProduct:[201,3,1,""],BasesOfQSymOrNCSF:[201,3,1,""]},"sage.combinat.root_system.cartan_type":{CartanType_decorator:[291,3,1,""],CartanType_crystallographic:[291,3,1,""],CartanType_standard_untwisted_affine:[291,3,1,""],CartanType_simple:[291,3,1,""],CartanType_simple_finite:[291,3,1,""],CartanType_standard_affine:[291,3,1,""],CartanTypeFactory:[291,3,1,""],CartanType_affine:[291,3,1,""],CartanType:[291,1,1,""],CartanType_finite:[291,3,1,""],CartanType_abstract:[291,3,1,""],CartanType_simply_laced:[291,3,1,""],CartanType_standard_finite:[291,3,1,""]},"sage.combinat.k_tableau.StrongTableau":{weight:[180,2,1,""],entries_by_content_standard:[180,2,1,""],restrict:[180,2,1,""],inner_shape:[180,2,1,""],content_of_highest_head:[180,2,1,""],cells_head_dictionary:[180,2,1,""],check:[180,2,1,""],number_of_connected_components:[180,2,1,""],size:[180,2,1,""],pp:[180,2,1,""],content_of_marked_head:[180,2,1,""],to_standard_tableau:[180,2,1,""],is_column_strict_with_weight:[180,2,1,""],spin_of_ribbon:[180,2,1,""],ribbons_above_marked:[180,2,1,""],set_weight:[180,2,1,""],left_action:[180,2,1,""],cell_of_marked_head:[180,2,1,""],to_transposition_sequence:[180,2,1,""],follows_tableau:[180,2,1,""],contents_of_heads:[180,2,1,""],outer_shape:[180,2,1,""],shape:[180,2,1,""],cell_of_highest_head:[180,2,1,""],spin:[180,2,1,""],cells_of_marked_ribbon:[180,2,1,""],to_standard_list:[180,2,1,""],to_list:[180,2,1,""],to_unmarked_list:[180,2,1,""],to_unmarked_standard_list:[180,2,1,""],intermediate_shapes:[180,2,1,""],cells_of_heads:[180,2,1,""],entries_by_content:[180,2,1,""],height_of_ribbon:[180,2,1,""]},"sage.combinat.subset.Subsets_sk":{rank:[74,2,1,""],last:[74,2,1,""],an_element:[74,2,1,""],random_element:[74,2,1,""],unrank:[74,2,1,""],cardinality:[74,2,1,""],first:[74,2,1,""]},"sage.combinat.root_system.weyl_group.WeylGroup_gens":{one:[205,2,1,""],domain:[205,2,1,""],character_table:[205,2,1,""],classical:[205,2,1,""],coxeter_matrix:[205,2,1,""],bruhat_graph:[205,2,1,""],Element:[205,4,1,""],index_set:[205,2,1,""],from_morphism:[205,2,1,""],simple_reflection:[205,2,1,""],reflections:[205,2,1,""],morphism_matrix:[205,2,1,""],simple_reflections:[205,2,1,""],long_element_hardcoded:[205,2,1,""],cartan_type:[205,2,1,""],unit:[205,2,1,""]},"sage.combinat.root_system.type_G_affine.CartanType":{dynkin_diagram:[204,2,1,""],ascii_art:[204,2,1,""]},"sage.combinat.root_system.type_D_affine":{CartanType:[45,3,1,""]},"sage.combinat.words.words.FiniteWords_over_OrderedAlphabet":{random_element:[59,2,1,""]},"sage.combinat.root_system.ambient_space":{AmbientSpaceElement:[295,3,1,""],AmbientSpace:[295,3,1,""]},"sage.combinat.composition_signed":{SignedCompositions:[126,3,1,""]},"sage.combinat.tuple.Tuples_sk":{cardinality:[31,2,1,""]},"sage.combinat.root_system.type_affine.AmbientSpace.Element":{inner_product:[259,2,1,""],scalar:[259,2,1,""],associated_coroot:[259,2,1,""]},"sage.combinat.root_system.weyl_group":{WeylGroupElement:[205,3,1,""],WeylGroup_gens:[205,3,1,""],WeylGroup:[205,1,1,""],ClassicalWeylSubgroup:[205,3,1,""]},"sage.combinat.root_system.cartan_matrix.CartanMatrix":{principal_submatrices:[69,2,1,""],cartan_matrix:[69,2,1,""],relabel:[69,2,1,""],rank:[69,2,1,""],is_lorentzian:[69,2,1,""],is_simply_laced:[69,2,1,""],dual:[69,2,1,""],is_affine:[69,2,1,""],is_indecomposable:[69,2,1,""],symmetrizer:[69,2,1,""],root_space:[69,2,1,""],root_system:[69,2,1,""],is_finite:[69,2,1,""],indecomposable_blocks:[69,2,1,""],is_hyperbolic:[69,2,1,""],dynkin_diagram:[69,2,1,""],is_crystallographic:[69,2,1,""],is_indefinite:[69,2,1,""],symmetrized_matrix:[69,2,1,""],index_set:[69,2,1,""],row_with_indices:[69,2,1,""],reflection_group:[69,2,1,""],column_with_indices:[69,2,1,""],cartan_type:[69,2,1,""]},"sage.combinat.designs.group_divisible_designs":{group_divisible_design:[278,1,1,""],GroupDivisibleDesign:[278,3,1,""],GDD_4_2:[278,1,1,""]},"sage.combinat.words.morphism":{WordMorphism:[5,3,1,""],get_cycles:[5,1,1,""]},"sage.combinat.root_system.type_E_affine":{CartanType:[252,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_C":{classical_decomposition:[106,2,1,""],highest_weight_dict:[106,2,1,""],from_ambient_crystal:[106,2,1,""],to_ambient_crystal:[106,2,1,""],ambient_dict_pm_diagrams:[106,2,1,""],ambient_crystal:[106,2,1,""],ambient_highest_weight_dict:[106,2,1,""],Element:[106,4,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_A":{classical_decomposition:[106,2,1,""],promotion:[106,2,1,""],dynkin_diagram_automorphism:[106,2,1,""],promotion_inverse:[106,2,1,""]},"sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterVariable":{almost_positive_root:[319,2,1,""]},"sage.combinat.crystals.monomial_crystals.NakajimaYMonomial":{phi:[221,2,1,""],e:[221,2,1,""],weight:[221,2,1,""],f:[221,2,1,""],weight_in_root_lattice:[221,2,1,""],epsilon:[221,2,1,""]},"sage.combinat.core.Core":{to_bounded_partition:[99,2,1,""],affine_symmetric_group_simple_action:[99,2,1,""],weak_covers:[99,2,1,""],weak_le:[99,2,1,""],k:[99,2,1,""],contains:[99,2,1,""],to_grassmannian:[99,2,1,""],strong_covers:[99,2,1,""],strong_le:[99,2,1,""],length:[99,2,1,""],strong_down_list:[99,2,1,""],affine_symmetric_group_action:[99,2,1,""],to_partition:[99,2,1,""],size:[99,2,1,""]},"sage.combinat.partition_tuple.PartitionTuples":{size:[293,2,1,""],Element:[293,4,1,""],global_options:[293,1,1,""],level:[293,2,1,""]},"sage.combinat.root_system.type_G_affine":{CartanType:[204,3,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_312":{cardinality:[286,2,1,""]},"sage.combinat.k_tableau.WeakTableaux_core":{diag:[180,2,1,""],circular_distance:[180,2,1,""],Element:[180,4,1,""]},"sage.combinat.sloane_functions.A002113":{list:[56,2,1,""]},"sage.combinat.finite_state_machine.FiniteStateMachine":{iter_transitions:[184,2,1,""],default_format_letter:[184,1,1,""],projection:[184,2,1,""],output_alphabet:[184,4,1,""],digraph:[184,2,1,""],delete_state:[184,2,1,""],format_letter_negative:[184,2,1,""],concatenation:[184,2,1,""],add_transitions_from_function:[184,2,1,""],states:[184,2,1,""],format_transition_label_reversed:[184,2,1,""],input_alphabet:[184,4,1,""],determine_alphabets:[184,2,1,""],with_final_word_out:[184,2,1,""],empty_copy:[184,2,1,""],deepcopy:[184,2,1,""],has_state:[184,2,1,""],input_projection:[184,2,1,""],has_final_states:[184,2,1,""],prepone_output:[184,2,1,""],Kleene_closure:[184,2,1,""],plot:[184,2,1,""],has_initial_state:[184,2,1,""],transitions:[184,2,1,""],iter_process:[184,2,1,""],product_FiniteStateMachine:[184,2,1,""],accessible_components:[184,2,1,""],graph:[184,2,1,""],is_deterministic:[184,2,1,""],is_Markov_chain:[184,2,1,""],is_monochromatic:[184,2,1,""],process:[184,2,1,""],state:[184,2,1,""],equivalence_classes:[184,2,1,""],"__call__":[184,2,1,""],intersection:[184,2,1,""],add_transition:[184,2,1,""],add_from_transition_function:[184,2,1,""],set_coordinates:[184,2,1,""],relabeled:[184,2,1,""],merged_transitions:[184,2,1,""],has_final_state:[184,2,1,""],final_states:[184,2,1,""],add_state:[184,2,1,""],composition:[184,2,1,""],iter_states:[184,2,1,""],format_transition_label:[184,2,1,""],epsilon_successors:[184,2,1,""],induced_sub_finite_state_machine:[184,2,1,""],has_transition:[184,2,1,""],transposition:[184,2,1,""],has_initial_states:[184,2,1,""],split_transitions:[184,2,1,""],markov_chain_simplification:[184,2,1,""],copy:[184,2,1,""],delete_transition:[184,2,1,""],predecessors:[184,2,1,""],initial_states:[184,2,1,""],output_projection:[184,2,1,""],construct_final_word_out:[184,2,1,""],default_format_transition_label:[184,2,1,""],iter_final_states:[184,2,1,""],latex_options:[184,2,1,""],adjacency_matrix:[184,2,1,""],transition:[184,2,1,""],iter_initial_states:[184,2,1,""],add_states:[184,2,1,""],on_duplicate_transition:[184,2,1,""],final_components:[184,2,1,""],remove_epsilon_transitions:[184,2,1,""],format_letter:[184,1,1,""],disjoint_union:[184,2,1,""],asymptotic_moments:[184,2,1,""],is_connected:[184,2,1,""],is_complete:[184,2,1,""],quotient:[184,2,1,""]},"sage.combinat.species.series.LazyPowerSeries":{get_stream:[289,2,1,""],iterator:[289,2,1,""],compute_coefficients:[289,2,1,""],integral:[289,2,1,""],get_order:[289,2,1,""],refine_aorder:[289,2,1,""],get_aorder:[289,2,1,""],compose:[289,2,1,""],compute_aorder:[289,2,1,""],restricted:[289,2,1,""],add:[289,2,1,""],tail:[289,2,1,""],is_zero:[289,2,1,""],derivative:[289,2,1,""],composition:[289,2,1,""],initialize_coefficient_stream:[289,2,1,""],define:[289,2,1,""],coefficient:[289,2,1,""],set_approximate_order:[289,2,1,""],is_finite:[289,2,1,""],coefficients:[289,2,1,""],exponential:[289,2,1,""],times:[289,2,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_G_element":{epsilon:[290,2,1,""],phi:[290,2,1,""],e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.species.subset_species":{SubsetSpeciesStructure:[273,3,1,""],SubsetSpecies:[273,3,1,""],SubsetSpecies_class:[273,4,1,""]},"sage.combinat.ribbon_tableau":{RibbonTableaux:[117,3,1,""],cospin_polynomial:[117,1,1,""],count_rec:[117,1,1,""],insertion_tableau:[117,1,1,""],spin_rec:[117,1,1,""],RibbonTableau_class:[117,3,1,""],SemistandardMultiSkewTableaux:[117,3,1,""],spin_polynomial:[117,1,1,""],RibbonTableau:[117,3,1,""],RibbonTableaux_shape_weight_length:[117,3,1,""],graph_implementation_rec:[117,1,1,""],MultiSkewTableaux:[117,3,1,""],spin_polynomial_square:[117,1,1,""],list_rec:[117,1,1,""],MultiSkewTableau:[117,3,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.Realizations":{ParentMethods:[201,3,1,""]},"sage.combinat.composition_tableau.CompositionTableaux_all":{an_element:[166,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnPrimitiveElements":{super_categories:[140,2,1,""],ParentMethods:[140,3,1,""]},"sage.combinat.combination.Combinations_mset":{cardinality:[15,2,1,""]},"sage.combinat.integer_vectors_mod_permgroup":{IntegerVectorsModPermutationGroup_with_constraints:[317,3,1,""],IntegerVectorsModPermutationGroup:[317,3,1,""],IntegerVectorsModPermutationGroup_All:[317,3,1,""]},"sage.combinat.crystals.kyoto_path_model.KyotoPathModel":{weight_lattice_realization:[203,2,1,""],finite_tensor_product:[203,2,1,""],Element:[203,3,1,""]},"sage.combinat.descent_algebra.DescentAlgebraBases":{super_categories:[305,2,1,""],ElementMethods:[305,3,1,""],ParentMethods:[305,3,1,""]},"sage.combinat.root_system.type_relabel.CartanType_finite":{affine:[167,2,1,""],AmbientSpace:[167,4,1,""]},"sage.combinat.words.word":{InfiniteWord_iter:[231,3,1,""],FiniteWord_callable_with_caching:[231,3,1,""],FiniteWord_char:[231,3,1,""],InfiniteWord_callable_with_caching:[231,3,1,""],FiniteWord_iter_with_caching:[231,3,1,""],Word_iter:[231,3,1,""],FiniteWord_tuple:[231,3,1,""],FiniteWord_iter:[231,3,1,""],FiniteWord_list:[231,3,1,""],Word:[231,1,1,""],InfiniteWord_callable:[231,3,1,""],FiniteWord_str:[231,3,1,""],InfiniteWord_iter_with_caching:[231,3,1,""],Word_iter_with_caching:[231,3,1,""],FiniteWord_callable:[231,3,1,""]},"sage.combinat.free_prelie_algebra":{FreePreLieAlgebra:[16,3,1,""]},"sage.combinat.root_system.type_E":{CartanType:[236,3,1,""],AmbientSpace:[236,3,1,""]},"sage.combinat.vector_partition.VectorPartition":{sum:[282,2,1,""],partition_at_vertex:[282,2,1,""]},"sage.combinat.root_system.root_lattice_realizations":{RootLatticeRealizations:[143,3,1,""]},"sage.combinat.designs.covering_design":{CoveringDesign:[173,3,1,""],schonheim:[173,1,1,""],best_known_covering_design_www:[173,1,1,""],trivial_covering_design:[173,1,1,""]},"sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern":{pp:[58,2,1,""],boxed_entries:[58,2,1,""],weight:[58,2,1,""],number_of_boxes:[58,2,1,""],number_of_circles:[58,2,1,""],number_of_special_entries:[58,2,1,""],special_entries:[58,2,1,""],is_strict:[58,2,1,""],circled_entries:[58,2,1,""],row_sums:[58,2,1,""],Tokuyama_coefficient:[58,2,1,""],to_tableau:[58,2,1,""],check:[58,2,1,""]},"sage.combinat.interval_posets":{TamariIntervalPosets_size:[185,3,1,""],TamariIntervalPosets_all:[185,3,1,""],TamariIntervalPoset:[185,3,1,""],TamariIntervalPosets:[185,3,1,""]},"sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement":{pp:[55,2,1,""],left_split:[55,2,1,""],right_split:[55,2,1,""],to_rigged_configuration:[55,2,1,""],lusztig_involution:[55,2,1,""],to_tensor_product_of_kirillov_reshetikhin_crystals:[55,2,1,""],classical_weight:[55,2,1,""]},"sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD":{halving_map:[109,2,1,""],run:[109,2,1,""],doubling_map:[109,2,1,""],next_state:[109,2,1,""]},"sage.combinat.species.structure.GenericSpeciesStructure":{change_labels:[149,2,1,""],labels:[149,2,1,""],is_isomorphic:[149,2,1,""]},"sage.combinat.root_system.type_C.CartanType":{coxeter_number:[238,2,1,""],dual_coxeter_number:[238,2,1,""],dynkin_diagram:[238,2,1,""],ascii_art:[238,2,1,""],dual:[238,2,1,""],AmbientSpace:[238,4,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.elementary":{Element:[115,3,1,""]},"sage.combinat.partition_algebra.SetPartitionsTk_k":{cardinality:[169,2,1,""]},"sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux":{tensor_product_of_kirillov_reshetikhin_crystals:[153,2,1,""],rigged_configurations:[153,2,1,""],tensor:[153,2,1,""],Element:[153,4,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement":{lusztig_involution:[106,2,1,""],to_kirillov_reshetikhin_tableau:[106,2,1,""],to_tableau:[106,2,1,""],pp:[106,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Elementary.Element":{psi_involution:[140,2,1,""],verschiebung:[140,2,1,""],star_involution:[140,2,1,""]},"sage.combinat.kazhdan_lusztig.KazhdanLusztigPolynomial":{P:[199,2,1,""],R:[199,2,1,""],R_tilde:[199,2,1,""]},"sage.combinat.sf.sf.SymmetricFunctions":{homogeneous:[283,2,1,""],schur:[283,2,1,""],inject_shorthands:[283,2,1,""],monomial:[283,2,1,""],llt:[283,2,1,""],kBoundedSubspace:[283,2,1,""],elementary:[283,2,1,""],zonal:[283,2,1,""],Witt:[283,2,1,""],macdonald:[283,2,1,""],witt:[283,2,1,""],khomogeneous:[283,2,1,""],kschur:[283,2,1,""],complete:[283,2,1,""],power:[283,2,1,""],register_isomorphism:[283,2,1,""],jack:[283,2,1,""],Schur:[283,2,1,""],e:[283,2,1,""],from_polynomial:[283,2,1,""],f:[283,2,1,""],h:[283,2,1,""],m:[283,2,1,""],p:[283,2,1,""],s:[283,2,1,""],powersum:[283,2,1,""],w:[283,2,1,""],forgotten:[283,2,1,""],hall_littlewood:[283,2,1,""],kBoundedQuotient:[283,2,1,""],a_realization:[283,2,1,""]},"sage.combinat.tableau.SemistandardTableaux_shape":{cardinality:[7,2,1,""],random_element:[7,2,1,""]},"sage.combinat.integer_vector_weighted.WeightedIntegerVectors_all":{subset:[114,2,1,""],grading:[114,2,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element":{e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.rigged_configurations.tensor_product_kr_tableaux.HighestWeightTensorKRT":{cardinality:[153,2,1,""]},"sage.combinat.combinatorial_algebra.CombinatorialAlgebra":{product:[214,2,1,""],one_basis:[214,2,1,""]},"sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ElementMethods":{symmetric_form:[277,2,1,""],to_weight_space:[277,2,1,""]},"sage.combinat.sloane_functions.A000120":{f:[56,2,1,""]},"sage.combinat.crystals.direct_sum":{DirectSumOfCrystals:[191,3,1,""]},"sage.combinat.sf.new_kschur.KBoundedSubspace":{retract:[298,2,1,""],K_kschur:[298,2,1,""],khomogeneous:[298,2,1,""],realizations:[298,2,1,""],kschur:[298,2,1,""]},"sage.combinat.sf.macdonald":{Macdonald:[92,3,1,""],MacdonaldPolynomials_h:[92,3,1,""],MacdonaldPolynomials_j:[92,3,1,""],MacdonaldPolynomials_q:[92,3,1,""],MacdonaldPolynomials_p:[92,3,1,""],MacdonaldPolynomials_s:[92,3,1,""],MacdonaldPolynomials_generic:[92,3,1,""],cmunu1:[92,1,1,""],c2:[92,1,1,""],c1:[92,1,1,""],qt_kostka:[92,1,1,""],MacdonaldPolynomials_ht:[92,3,1,""],cmunu:[92,1,1,""]},"sage.combinat.species.generating_series":{ExponentialGeneratingSeriesRing:[78,1,1,""],CycleIndexSeriesRing_class:[78,3,1,""],CycleIndexSeries:[78,3,1,""],CycleIndexSeriesRing:[78,1,1,""],ExponentialGeneratingSeriesRing_class:[78,3,1,""],factorial_gen:[78,1,1,""],OrdinaryGeneratingSeriesRing_class:[78,3,1,""],OrdinaryGeneratingSeries:[78,3,1,""],OrdinaryGeneratingSeriesRing:[78,1,1,""],ExponentialGeneratingSeries:[78,3,1,""]},"sage.combinat.dyck_word.CompleteDyckWords":{from_Catalan_code:[256,2,1,""],from_area_sequence:[256,2,1,""],from_noncrossing_partition:[256,2,1,""],from_non_decreasing_parking_function:[256,2,1,""],Element:[256,4,1,""]},"sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal.Element":{e:[112,2,1,""],bracketing:[112,2,1,""],f:[112,2,1,""]},"sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC":{from_virtual:[76,2,1,""],to_virtual:[76,2,1,""],virtual:[76,2,1,""],Element:[76,3,1,""]},"sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWallsElement":{phi:[108,2,1,""],e:[108,2,1,""],weight:[108,2,1,""],f:[108,2,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum.Element":{to_symmetric_function:[115,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnGroupLikeElements.ParentMethods":{antipode_on_basis:[140,2,1,""],coproduct_on_generators:[140,2,1,""]},"sage.combinat.free_module":{CombinatorialFreeModule_Tensor:[141,3,1,""],CombinatorialFreeModule_CartesianProduct:[141,3,1,""],CombinatorialFreeModuleElement:[141,3,1,""],CombinatorialFreeModule:[141,3,1,""],CartesianProductWithFlattening:[141,3,1,""]},"sage.combinat.root_system.cartan_type.CartanType_abstract":{as_folding:[291,2,1,""],marked_nodes:[291,2,1,""],is_implemented:[291,2,1,""],is_reducible:[291,2,1,""],coxeter_matrix:[291,2,1,""],relabel:[291,2,1,""],is_finite:[291,2,1,""],global_options:[291,1,1,""],rank:[291,2,1,""],is_compound:[291,2,1,""],is_irreducible:[291,2,1,""],index_set:[291,2,1,""],is_simply_laced:[291,2,1,""],dual:[291,2,1,""],is_atomic:[291,2,1,""],is_crystalographic:[291,2,1,""],coxeter_diagram:[291,2,1,""],is_affine:[291,2,1,""],type:[291,2,1,""],is_crystallographic:[291,2,1,""],root_system:[291,2,1,""]},"sage.combinat.words.paths.FiniteWordPath_2d":{plot:[311,2,1,""],ymax:[311,2,1,""],area:[311,2,1,""],plot_directive_vector:[311,2,1,""],height:[311,2,1,""],width:[311,2,1,""],xmax:[311,2,1,""],xmin:[311,2,1,""],animate:[311,2,1,""],ymin:[311,2,1,""]},"sage.combinat.partition.Partitions_nk":{subset:[306,2,1,""],cardinality:[306,2,1,""]},"sage.combinat.ribbon_shaped_tableau":{StandardRibbonShapedTableaux_shape:[224,3,1,""],Ribbon_class:[224,3,1,""],RibbonShapedTableau:[224,3,1,""],StandardRibbonShapedTableaux:[224,3,1,""],RibbonShapedTableaux:[224,3,1,""]},"sage.combinat.parking_functions.ParkingFunction_class":{ides_composition:[128,2,1,""],to_NonDecreasingParkingFunction:[128,2,1,""],jump:[128,2,1,""],dinv:[128,2,1,""],secondary_dinversion_pairs:[128,2,1,""],to_labelling_permutation:[128,2,1,""],ides:[128,2,1,""],to_labelling_dyck_word_pair:[128,2,1,""],area:[128,2,1,""],to_dyck_word:[128,2,1,""],dinversion_pairs:[128,2,1,""],to_labelling_area_sequence_pair:[128,2,1,""],jump_list:[128,2,1,""],to_labelled_dyck_word:[128,2,1,""],lucky_cars:[128,2,1,""],pretty_print:[128,2,1,""],primary_dinversion_pairs:[128,2,1,""],touch_composition:[128,2,1,""],diagonal_composition:[128,2,1,""],touch_points:[128,2,1,""],parking_permutation:[128,2,1,""],to_area_sequence:[128,2,1,""],cars_permutation:[128,2,1,""],characteristic_quasisymmetric_function:[128,2,1,""],diagonal_word:[128,2,1,""],diagonal_reading_word:[128,2,1,""],luck:[128,2,1,""]},"sage.combinat.sloane_functions.ExtremesOfPermanentsSequence":{list:[56,2,1,""],gen:[56,2,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_132":{cardinality:[286,2,1,""]},"sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations":{super_categories:[143,2,1,""],Algebras:[143,4,1,""],ElementMethods:[143,3,1,""],ParentMethods:[143,3,1,""]},"sage.combinat.root_system.weight_space.WeightSpaceElement":{to_ambient:[243,2,1,""],is_dominant:[243,2,1,""],scalar:[243,2,1,""],to_weight_space:[243,2,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_B_element":{epsilon:[290,2,1,""],phi:[290,2,1,""],e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching":{flush:[36,2,1,""]},"sage.combinat.tableau.SemistandardTableaux_size":{cardinality:[7,2,1,""],random_element:[7,2,1,""]},"sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Reducible":{irreducible_components:[35,2,1,""],dual:[35,2,1,""],class_size:[35,2,1,""]},"sage.combinat.root_system.cartan_type.CartanType_crystallographic":{cartan_matrix:[291,2,1,""],dynkin_diagram:[291,2,1,""],ascii_art:[291,2,1,""],symmetrizer:[291,2,1,""],is_crystallographic:[291,2,1,""],is_crystalographic:[291,2,1,""],coxeter_diagram:[291,2,1,""],index_set_bipartition:[291,2,1,""]},"sage.combinat.dyck_word.DyckWord":{valleys:[256,2,1,""],position_of_first_return:[256,2,1,""],number_of_touch_points:[256,2,1,""],number_of_valleys:[256,2,1,""],positions_of_double_rises:[256,2,1,""],number_of_peaks:[256,2,1,""],number_of_initial_rises:[256,2,1,""],to_standard_tableau:[256,2,1,""],set_latex_options:[256,2,1,""],pp:[256,2,1,""],to_area_sequence:[256,2,1,""],number_of_open_symbols:[256,2,1,""],number_of_close_symbols:[256,2,1,""],heights:[256,2,1,""],to_binary_tree_tamari:[256,2,1,""],peaks:[256,2,1,""],associated_parenthesis:[256,2,1,""],rise_composition:[256,2,1,""],pretty_print:[256,2,1,""],to_binary_tree:[256,2,1,""],returns_to_zero:[256,2,1,""],tamari_interval:[256,2,1,""],min_from_heights:[256,5,1,""],height:[256,2,1,""],to_path_string:[256,2,1,""],touch_points:[256,2,1,""],touch_composition:[256,2,1,""],latex_options:[256,2,1,""],length:[256,2,1,""],set_ascii_art:[256,6,1,""],from_heights:[256,5,1,""],number_of_double_rises:[256,2,1,""],is_complete:[256,2,1,""]},"sage.combinat.sf.k_dual":{KBoundedQuotientBases:[77,3,1,""],DualkSchurFunctions:[77,3,1,""],KBoundedQuotientBasis:[77,3,1,""],kMonomial:[77,3,1,""],kbounded_HallLittlewoodP:[77,3,1,""],KBoundedQuotient:[77,3,1,""],AffineSchurFunctions:[77,3,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_odd.RCToKRTBijectionTypeA2Odd":{next_state:[85,2,1,""]},"sage.combinat.subset.SubsetsSorted":{last:[74,2,1,""],unrank:[74,2,1,""],random_element:[74,2,1,""],first:[74,2,1,""]},"sage.combinat.crystals.tensor_product.FullTensorProductOfRegularCrystals":{Element:[21,4,1,""]},"sage.combinat.designs.latin_squares":{latin_square_product:[261,1,1,""],are_mutually_orthogonal_latin_squares:[261,1,1,""],MOLS_table:[261,1,1,""],mutually_orthogonal_latin_squares:[261,1,1,""]},"sage.combinat.crystals.letters.EmptyLetter":{phi:[290,2,1,""],e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""],epsilon:[290,2,1,""],value:[290,4,1,""]},"sage.combinat.root_system.type_folded.CartanTypeFolded":{folding_of:[70,2,1,""],folding_orbit:[70,2,1,""],cartan_type:[70,2,1,""],scaling_factors:[70,2,1,""]},"sage.combinat.diagram_algebras":{to_set_partition:[186,1,1,""],PartitionAlgebra:[186,3,1,""],SubPartitionAlgebra:[186,3,1,""],to_graph:[186,1,1,""],planar_diagrams:[186,1,1,""],brauer_diagrams:[186,1,1,""],to_Brauer_partition:[186,1,1,""],PropagatingIdeal:[186,3,1,""],temperley_lieb_diagrams:[186,1,1,""],identity_set_partition:[186,1,1,""],ideal_diagrams:[186,1,1,""],is_planar:[186,1,1,""],DiagramAlgebra:[186,3,1,""],PlanarAlgebra:[186,3,1,""],pair_to_graph:[186,1,1,""],partition_diagrams:[186,1,1,""],propagating_number:[186,1,1,""],BrauerAlgebra:[186,3,1,""],TemperleyLiebAlgebra:[186,3,1,""],set_partition_composition:[186,1,1,""]},"sage.combinat.matrices.dlxcpp":{AllExactCovers:[216,1,1,""],DLXCPP:[216,1,1,""],OneExactCover:[216,1,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux":{classical_decomposition:[281,2,1,""],kirillov_reshetikhin_crystal:[281,2,1,""],tensor:[281,2,1,""],from_kirillov_reshetikhin_crystal:[281,2,1,""],Element:[281,4,1,""],s:[281,2,1,""],r:[281,2,1,""],module_generator:[281,2,1,""],affinization:[281,2,1,""]},"sage.combinat.root_system.fundamental_group":{FundamentalGroupOfExtendedAffineWeylGroup:[313,1,1,""],FundamentalGroupOfExtendedAffineWeylGroup_Class:[313,3,1,""],FundamentalGroupGLElement:[313,3,1,""],FundamentalGroupGL:[313,3,1,""],FundamentalGroupElement:[313,3,1,""]},"sage.combinat.species.empty_species":{EmptySpecies_class:[1,4,1,""],EmptySpecies:[1,3,1,""]},"sage.combinat.knutson_tao_puzzles.PuzzlePieces":{boundary_deltas:[52,2,1,""],add_piece:[52,2,1,""],add_forbidden_label:[52,2,1,""],rhombus_pieces:[52,2,1,""],add_T_piece:[52,2,1,""],nabla_pieces:[52,2,1,""],delta_pieces:[52,2,1,""]},"sage.combinat.crystals.spins.GenericCrystalOfSpins":{digraph:[50,2,1,""],list:[50,2,1,""],lt_elements:[50,2,1,""]},"sage.combinat.permutation.Permutations_nk":{cardinality:[286,2,1,""],random_element:[286,2,1,""],Element:[286,3,1,""]},"sage.combinat.words.words.Words_all":{alphabet:[59,2,1,""],size_of_alphabet:[59,2,1,""],has_letter:[59,2,1,""]},"sage.combinat.sf.schur":{SymmetricFunctionAlgebra_schur:[14,3,1,""]},"sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset":{markov_chain_digraph:[198,2,1,""],markov_chain_transition_matrix:[198,2,1,""],poset:[198,2,1,""],Element:[198,4,1,""]},"sage.combinat.cartesian_product.CartesianProduct_iters":{is_finite:[299,2,1,""],cardinality:[299,2,1,""],list:[299,2,1,""],unrank:[299,2,1,""],random_element:[299,2,1,""]},"sage.combinat.posets.lattices":{FiniteMeetSemilattice:[29,3,1,""],JoinSemilattice:[29,1,1,""],FiniteJoinSemilattice:[29,3,1,""],FiniteLatticePoset:[29,3,1,""],MeetSemilattice:[29,1,1,""],LatticePoset:[29,1,1,""]},"sage.combinat.crystals.affine_factorization":{AffineFactorizationCrystal:[112,3,1,""],affine_factorizations:[112,1,1,""]},"sage.combinat.species.structure.SpeciesStructureWrapper":{canonical_label:[149,2,1,""],labels:[149,2,1,""],transport:[149,2,1,""]},"sage.combinat.finite_state_machine_generators":{TransducerGenerators:[190,3,1,""]},"sage.combinat.words.word_datatypes.WordDatatype_str":{count:[150,2,1,""],has_prefix:[150,2,1,""],partition:[150,2,1,""],is_suffix:[150,2,1,""],rfind:[150,2,1,""],length:[150,2,1,""],split:[150,2,1,""],is_prefix:[150,2,1,""],find:[150,2,1,""],has_suffix:[150,2,1,""]},"sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w":{antipode_on_basis:[27,2,1,""],sum_of_partitions:[27,2,1,""],Element:[27,3,1,""],duality_pairing:[27,2,1,""],dual_basis:[27,2,1,""],coproduct_on_basis:[27,2,1,""],product_on_basis:[27,2,1,""],to_symmetric_function:[27,2,1,""]},"sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods":{embed_at_level:[277,2,1,""],dynkin_diagram_automorphism_of_alcove_morphism:[277,2,1,""],rho_classical:[277,2,1,""],reduced_word_of_alcove_morphism:[277,2,1,""],is_extended:[277,2,1,""],reduced_word_of_translation:[277,2,1,""],weyl_dimension:[277,2,1,""],rho:[277,2,1,""],fundamental_weights:[277,2,1,""],simple_root:[277,2,1,""],signs_of_alcovewalk:[277,2,1,""],fundamental_weight:[277,2,1,""]},"sage.combinat.rooted_tree.RootedTrees_size":{check_element:[48,2,1,""],element_class:[48,2,1,""],cardinality:[48,2,1,""]},"sage.combinat.species.generating_series.CycleIndexSeries":{count:[78,2,1,""],generating_series:[78,2,1,""],functorial_composition:[78,2,1,""],compositional_inverse:[78,2,1,""],stretch:[78,2,1,""],arithmetic_product:[78,2,1,""],isotype_generating_series:[78,2,1,""],weighted_composition:[78,2,1,""],expand_as_sf:[78,2,1,""],coefficient_cycle_type:[78,2,1,""]},"sage.combinat.crystals.direct_sum.DirectSumOfCrystals":{weight_lattice_realization:[191,2,1,""],Element:[191,3,1,""]},"sage.combinat.root_system.type_F_affine.CartanType":{dynkin_diagram:[194,2,1,""],ascii_art:[194,2,1,""]},"sage.combinat.symmetric_group_representations.YoungRepresentations_Orthogonal":{object_class:[75,4,1,""]},"sage.combinat.crystals.elementary_crystals.ElementaryCrystal":{weight_lattice_realization:[254,2,1,""],Element:[254,3,1,""]},"sage.combinat.rigged_configurations.rigged_partition.RiggedPartition":{insert_cell:[168,2,1,""],remove_cell:[168,2,1,""],get_num_cells_to_column:[168,2,1,""]},"sage.combinat.sf.jack.Jack":{Qp:[309,2,1,""],base_ring:[309,2,1,""],symmetric_function_ring:[309,2,1,""],J:[309,2,1,""],Q:[309,2,1,""],P:[309,2,1,""]},"sage.combinat.abstract_tree.AbstractTree":{iterative_post_order_traversal:[84,2,1,""],paths:[84,2,1,""],post_order_traversal_iter:[84,2,1,""],subtrees:[84,2,1,""],tree_factorial:[84,2,1,""],to_hexacode:[84,2,1,""],breadth_first_order_traversal:[84,2,1,""],canonical_labelling:[84,2,1,""],iterative_pre_order_traversal:[84,2,1,""],depth:[84,2,1,""],pre_order_traversal:[84,2,1,""],node_number:[84,2,1,""],pre_order_traversal_iter:[84,2,1,""],post_order_traversal:[84,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Phi.Element":{psi_involution:[140,2,1,""],verschiebung:[140,2,1,""],star_involution:[140,2,1,""]},"sage.combinat.sf.witt":{SymmetricFunctionAlgebra_witt:[260,3,1,""]},"sage.combinat.rigged_configurations.bij_type_C.RCToKRTBijectionTypeC":{next_state:[103,2,1,""]},"sage.combinat.k_tableau":{WeakTableau_core:[180,3,1,""],StrongTableau:[180,3,1,""],WeakTableaux:[180,1,1,""],WeakTableau_factorized_permutation:[180,3,1,""],WeakTableaux_bounded:[180,3,1,""],WeakTableaux_abstract:[180,3,1,""],WeakTableau_abstract:[180,3,1,""],StrongTableaux:[180,3,1,""],intermediate_shapes:[180,1,1,""],WeakTableaux_factorized_permutation:[180,3,1,""],WeakTableau:[180,1,1,""],WeakTableau_bounded:[180,3,1,""],WeakTableaux_core:[180,3,1,""],nabs:[180,1,1,""]},"sage.combinat.crystals.direct_sum.DirectSumOfCrystals.Element":{epsilon:[191,2,1,""],phi:[191,2,1,""],e:[191,2,1,""],weight:[191,2,1,""],f:[191,2,1,""]},"sage.combinat.root_system.type_F.AmbientSpace":{negative_roots:[235,2,1,""],positive_roots:[235,2,1,""],fundamental_weights:[235,2,1,""],simple_root:[235,2,1,""],root:[235,2,1,""],dimension:[235,2,1,""]},"sage.combinat.e_one_star.Face":{color:[93,2,1,""],vector:[93,2,1,""],type:[93,2,1,""]},"sage.combinat.root_system.weight_space":{WeightSpaceElement:[243,3,1,""],WeightSpace:[243,3,1,""]},"sage.combinat.matrices.latin.LatinSquare":{set_immutable:[0,2,1,""],contained_in:[0,2,1,""],filled_cells_map:[0,2,1,""],nr_filled_cells:[0,2,1,""],top_left_empty_cell:[0,2,1,""],is_latin_square:[0,2,1,""],vals_in_col:[0,2,1,""],apply_isotopism:[0,2,1,""],nr_distinct_symbols:[0,2,1,""],gcs:[0,2,1,""],is_completable:[0,2,1,""],is_empty_column:[0,2,1,""],is_empty_row:[0,2,1,""],permissable_values:[0,2,1,""],actual_row_col_sym_sizes:[0,2,1,""],ncols:[0,2,1,""],random_empty_cell:[0,2,1,""],nrows:[0,2,1,""],vals_in_row:[0,2,1,""],dlxcpp_has_unique_completion:[0,2,1,""],latex:[0,2,1,""],find_disjoint_mates:[0,2,1,""],is_uniquely_completable:[0,2,1,""],clear_cells:[0,2,1,""],row:[0,2,1,""],list:[0,2,1,""],is_partial_latin_square:[0,2,1,""],dumps:[0,2,1,""],column:[0,2,1,""],disjoint_mate_dlxcpp_rows_and_map:[0,2,1,""]},"sage.combinat.tableau":{from_chain:[7,1,1,""],unmatched_places:[7,1,1,""],Tableau:[7,3,1,""],StandardTableau:[7,3,1,""],StandardTableaux_size:[7,3,1,""],StandardTableaux_shape:[7,3,1,""],SemistandardTableaux_size:[7,3,1,""],SemistandardTableaux_size_weight:[7,3,1,""],SemistandardTableaux_shape_weight:[7,3,1,""],SemistandardTableaux_shape_inf:[7,3,1,""],StandardTableaux_all:[7,3,1,""],Tableaux_size:[7,3,1,""],Tableau_class:[7,3,1,""],SemistandardTableaux:[7,3,1,""],symmetric_group_action_on_values:[7,1,1,""],SemistandardTableaux_size_inf:[7,3,1,""],SemistandardTableau:[7,3,1,""],from_shape_and_word:[7,1,1,""],Tableaux:[7,3,1,""],StandardTableaux:[7,3,1,""],SemistandardTableaux_shape:[7,3,1,""],Tableaux_all:[7,3,1,""],SemistandardTableaux_all:[7,3,1,""]},"sage.combinat.dlx.DLXMatrix":{next:[133,2,1,""]},"sage.combinat.knutson_tao_puzzles.DeltaPiece":{half_turn_rotation:[52,2,1,""],edges:[52,2,1,""],clockwise_rotation:[52,2,1,""]},"sage.combinat.integer_vector.IntegerVectors_all":{cardinality:[130,2,1,""],list:[130,2,1,""]},"sage.combinat.subset.SubMultiset_s":{generating_serie:[74,2,1,""],cardinality:[74,2,1,""],random_element:[74,2,1,""]},"sage.combinat.degree_sequences":{DegreeSequences:[62,3,1,""]},"sage.combinat.rooted_tree":{LabelledRootedTree:[48,3,1,""],LabelledRootedTrees_all:[48,3,1,""],RootedTrees:[48,3,1,""],number_of_rooted_trees:[48,1,1,""],RootedTree:[48,3,1,""],RootedTrees_all:[48,3,1,""],LabelledRootedTrees:[48,3,1,""],RootedTrees_size:[48,3,1,""]},"sage.combinat.cluster_algebra_quiver.mutation_type":{load_data:[120,1,1,""],is_mutation_finite:[120,1,1,""]},"sage.combinat.sf.classical":{init:[174,1,1,""],SymmetricFunctionAlgebra_classical:[174,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6":{classical_decomposition:[106,2,1,""],promotion_on_highest_weight_vectors:[106,2,1,""],promotion_on_highest_weight_vectors_function:[106,2,1,""],dynkin_diagram_automorphism:[106,2,1,""],promotion:[106,2,1,""],promotion_inverse:[106,2,1,""],affine_weight:[106,2,1,""],hw_auxiliary:[106,2,1,""],highest_weight_dict_inv:[106,2,1,""],automorphism_on_affine_weight:[106,2,1,""],highest_weight_dict:[106,2,1,""]},"sage.combinat.posets.incidence_algebras.IncidenceAlgebra.Element":{is_unit:[193,2,1,""],to_matrix:[193,2,1,""]},"sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations":{super_categories:[277,2,1,""],ElementMethods:[277,3,1,""],ParentMethods:[277,3,1,""]},"sage.combinat.e_one_star.E1Star":{sigma:[93,2,1,""],matrix:[93,2,1,""],inverse_matrix:[93,2,1,""]},"sage.combinat.species.permutation_species.PermutationSpeciesStructure":{automorphism_group:[246,2,1,""],canonical_label:[246,2,1,""],permutation_group_element:[246,2,1,""],transport:[246,2,1,""]},"sage.combinat.crystals.elementary_crystals":{RCrystal:[254,3,1,""],ElementaryCrystal:[254,3,1,""],TCrystal:[254,3,1,""],AbstractSingleCrystalElement:[254,3,1,""],ComponentCrystal:[254,3,1,""]},"sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableauxTypeD":{module_generator:[296,2,1,""],Element:[296,3,1,""]},"sage.combinat.designs.evenly_distributed_sets.EvenlyDistributedSetsBacktracker":{an_element:[208,2,1,""],cardinality:[208,2,1,""],to_difference_family:[208,2,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_finite_type":{maximal_elements:[225,2,1,""]},"sage.combinat.ncsym.bases":{NCSymDualBases:[297,3,1,""],NCSymBasis_abstract:[297,3,1,""],NCSymOrNCSymDualBases:[297,3,1,""],MultiplicativeNCSymBases:[297,3,1,""],NCSymBases:[297,3,1,""]},"sage.combinat.rigged_configurations.kleber_tree.KleberTreeTypeA2Even":{depth_first_iter:[207,2,1,""],breadth_first_iter:[207,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnGroupLikeElements":{super_categories:[140,2,1,""],ParentMethods:[140,3,1,""]},"sage.combinat.root_system.integrable_representations.IntegrableRepresentation":{string:[101,2,1,""],level:[101,2,1,""],highest_weight:[101,2,1,""],coxeter_number:[101,2,1,""],root_lattice:[101,2,1,""],m:[101,2,1,""],dual_coxeter_number:[101,2,1,""],cartan_type:[101,2,1,""],from_weight:[101,2,1,""],weight_lattice:[101,2,1,""],s:[101,2,1,""],modular_characteristic:[101,2,1,""],to_dominant:[101,2,1,""],branch:[101,2,1,""],to_weight:[101,2,1,""],dominant_maximal_weights:[101,2,1,""],strings:[101,2,1,""],print_strings:[101,2,1,""]},"sage.combinat.crystals.affine.AffineCrystalFromClassical":{retract:[265,2,1,""],lift:[265,2,1,""],list:[265,2,1,""],Element:[265,4,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element":{dual_action:[241,2,1,""],to_dual_classical_weyl:[241,2,1,""],to_dual_translation_left:[241,2,1,""],has_descent:[241,2,1,""]},"sage.combinat.sf.new_kschur.K_kSchur":{retract:[298,2,1,""],product:[298,2,1,""],lift:[298,2,1,""],homogeneous_basis_noncommutative_variables_zero_Hecke:[298,2,1,""],K_k_Schur_non_commutative_variables:[298,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsPRk_k":{cardinality:[169,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsPk_k":{cardinality:[169,2,1,""]},"sage.combinat.species.generating_series.OrdinaryGeneratingSeries":{count:[78,2,1,""],counts:[78,2,1,""]},"sage.combinat.sf.jack.JackPolynomials_q":{Element:[309,3,1,""]},"sage.combinat.crystals.affinization.AffinizationOfCrystal.Element":{epsilon:[9,2,1,""],phi:[9,2,1,""],e:[9,2,1,""],weight:[9,2,1,""],f:[9,2,1,""]},"sage.combinat.output":{tex_from_skew_array:[321,1,1,""],tex_from_array:[321,1,1,""],tex_from_array_tuple:[321,1,1,""]},"sage.combinat.sf.llt.LLT_cospin":{Element:[4,3,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_p":{scalar_qt_basis:[92,2,1,""],Element:[92,3,1,""]},"sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods":{plot_fundamental_weights:[143,2,1,""],projection:[143,2,1,""],classical:[143,2,1,""],positive_roots:[143,2,1,""],plot_crystal:[143,2,1,""],coroot_lattice:[143,2,1,""],positive_real_roots:[143,2,1,""],positive_roots_nonparabolic_sum:[143,2,1,""],a_long_simple_root:[143,2,1,""],nonparabolic_positive_root_sum:[143,2,1,""],alpha:[143,2,1,""],plot_coroots:[143,2,1,""],simple_reflections:[143,2,1,""],plot_alcove_walk:[143,2,1,""],null_root:[143,2,1,""],plot:[143,2,1,""],short_roots:[143,2,1,""],nonnesting_partition_lattice:[143,2,1,""],tau_epsilon_operator_on_almost_positive_roots:[143,2,1,""],coroot_space:[143,2,1,""],reflection:[143,2,1,""],simple_roots:[143,2,1,""],to_ambient_space_morphism:[143,2,1,""],cohighest_root:[143,2,1,""],null_coroot:[143,2,1,""],roots:[143,2,1,""],positive_roots_by_height:[143,2,1,""],dual_type_cospace:[143,2,1,""],root_poset:[143,2,1,""],plot_roots:[143,2,1,""],simple_projections:[143,2,1,""],highest_root:[143,2,1,""],negative_roots:[143,2,1,""],plot_fundamental_chamber:[143,2,1,""],positive_roots_parabolic:[143,2,1,""],fundamental_weights_from_simple_roots:[143,2,1,""],almost_positive_roots:[143,2,1,""],simple_coroot:[143,2,1,""],nonparabolic_positive_roots:[143,2,1,""],dynkin_diagram:[143,2,1,""],alphacheck:[143,2,1,""],tau_plus_minus:[143,2,1,""],plot_parse_options:[143,2,1,""],some_elements:[143,2,1,""],plot_ls_paths:[143,2,1,""],positive_imaginary_roots:[143,2,1,""],simple_root:[143,2,1,""],simple_projection:[143,2,1,""],plot_reflection_hyperplanes:[143,2,1,""],plot_alcoves:[143,2,1,""],basic_imaginary_roots:[143,2,1,""],simple_roots_tilde:[143,2,1,""],index_set:[143,2,1,""],simple_reflection:[143,2,1,""],weyl_group:[143,2,1,""],almost_positive_roots_decomposition:[143,2,1,""],s:[143,2,1,""],simple_coroots:[143,2,1,""],long_roots:[143,2,1,""],positive_roots_nonparabolic:[143,2,1,""],plot_hedron:[143,2,1,""],generalized_nonnesting_partition_lattice:[143,2,1,""],cartan_type:[143,2,1,""],plot_bounding_box:[143,2,1,""]},"sage.combinat.graph_path.GraphPaths_t":{list:[200,2,1,""]},"sage.combinat.sloane_functions.A001055":{nwf:[56,2,1,""]},"sage.combinat.integer_matrices.IntegerMatrices":{column_sums:[315,2,1,""],cardinality:[315,2,1,""],to_composition:[315,2,1,""],row_sums:[315,2,1,""]},"sage.combinat.sloane_functions.A111774":{is_number_of_the_third_kind:[56,2,1,""],list:[56,2,1,""]},"sage.combinat.graph_path.GraphPaths_s":{list:[200,2,1,""]},"sage.combinat.sf.dual":{SymmetricFunctionAlgebra_dual:[280,3,1,""]},"sage.combinat.root_system.hecke_algebra_representation":{CherednikOperatorsEigenvectors:[82,3,1,""],HeckeAlgebraRepresentation:[82,3,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Complete":{to_ncsym_on_basis:[140,2,1,""],Element:[140,3,1,""],to_symmetric_function_on_basis:[140,2,1,""],dual:[140,2,1,""],internal_product_on_basis:[140,2,1,""],to_symmetric_function:[140,2,1,""]},"sage.combinat.sloane_functions.A001836":{list:[56,2,1,""]},"sage.combinat.descent_algebra.DescentAlgebra.B":{product_on_basis:[305,2,1,""],one_basis:[305,2,1,""],to_I_basis:[305,2,1,""],to_nsym:[305,2,1,""],to_D_basis:[305,2,1,""]},"sage.combinat.sf.k_dual.KBoundedQuotientBases":{super_categories:[77,2,1,""],ElementMethods:[77,3,1,""],ParentMethods:[77,3,1,""]},"sage.combinat.restricted_growth.RestrictedGrowthArrays":{cardinality:[118,2,1,""]},"sage.combinat.tableau_tuple":{TableauTuples_size:[301,3,1,""],StandardTableauTuples_level:[301,3,1,""],TableauTuples_level:[301,3,1,""],TableauTuples_level_size:[301,3,1,""],StandardTableauTuples_shape:[301,3,1,""],StandardTableauTuples:[301,3,1,""],TableauTuple:[301,3,1,""],TableauTuples:[301,3,1,""],StandardTableauTuple:[301,3,1,""],TableauTuples_all:[301,3,1,""],StandardTableauTuples_all:[301,3,1,""],StandardTableauTuples_size:[301,3,1,""],StandardTableauTuples_level_size:[301,3,1,""]},"sage.combinat.sf":{homogeneous:[49,0,0,"-"],all:[213,0,0,"-"],classical:[174,0,0,"-"],monomial:[322,0,0,"-"],schur:[14,0,0,"-"],llt:[4,0,0,"-"],dual:[280,0,0,"-"],elementary:[249,0,0,"-"],"__init__":[156,0,0,"-"],macdonald:[92,0,0,"-"],ns_macdonald:[12,0,0,"-"],witt:[260,0,0,"-"],k_dual:[77,0,0,"-"],hall_littlewood:[83,0,0,"-"],jack:[309,0,0,"-"],kfpoly:[46,0,0,"-"],sfa:[68,0,0,"-"],powersum:[258,0,0,"-"],multiplicative:[116,0,0,"-"],orthotriang:[188,0,0,"-"],sf:[283,0,0,"-"],new_kschur:[298,0,0,"-"]},"sage.combinat.rigged_configurations.rigged_configuration_element.KRRCNonSimplyLacedElement":{cc:[220,2,1,""],e:[220,2,1,""],cocharge:[220,2,1,""],f:[220,2,1,""]},"sage.combinat.knutson_tao_puzzles.PuzzleFilling":{north_west_label_of_kink:[52,2,1,""],plot:[52,2,1,""],kink_coordinates:[52,2,1,""],is_in_south_edge:[52,2,1,""],is_completed:[52,2,1,""],add_piece:[52,2,1,""],south_labels:[52,2,1,""],contribution:[52,2,1,""],copy:[52,2,1,""],north_east_label_of_kink:[52,2,1,""],add_pieces:[52,2,1,""]},"sage.combinat.ncsym.dual":{SymmetricFunctionsNonCommutingVariablesDual:[27,3,1,""]},"sage.combinat.tableau_tuple.TableauTuples_level":{an_element:[301,2,1,""]},"sage.combinat.root_system.type_A.CartanType":{PieriFactors:[240,4,1,""],coxeter_number:[240,2,1,""],dual_coxeter_number:[240,2,1,""],dynkin_diagram:[240,2,1,""],ascii_art:[240,2,1,""],AmbientSpace:[240,4,1,""]},"sage.combinat.species.sum_species":{SumSpecies_class:[196,4,1,""],SumSpecies:[196,3,1,""],SumSpeciesStructure:[196,3,1,""]},"sage.combinat.ncsym.bases.MultiplicativeNCSymBases.ParentMethods":{product_on_basis:[297,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.PMDiagram":{pp:[106,2,1,""],intermediate_shape:[106,2,1,""],inner_shape:[106,2,1,""],heights_of_addable_plus:[106,2,1,""],heights_of_minus:[106,2,1,""],outer_shape:[106,2,1,""],sigma:[106,2,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_C_element":{epsilon:[290,2,1,""],phi:[290,2,1,""],e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.sf.sfa":{SymmetricFunctionAlgebra_generic_Element:[68,3,1,""],zee:[68,1,1,""],is_SymmetricFunctionAlgebra:[68,1,1,""],SymmetricFunctionAlgebra_generic:[68,3,1,""],SymmetricFunctionsBases:[68,3,1,""],is_SymmetricFunction:[68,1,1,""],SymmetricFunctionAlgebra:[68,1,1,""]},"sage.combinat.crystals.spins.Spin_crystal_type_D_element":{e:[50,2,1,""],f:[50,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement":{to_affine_weyl_left:[241,2,1,""],bruhat_le:[241,2,1,""],to_fundamental_group:[241,2,1,""],has_descent:[241,2,1,""]},"sage.combinat.free_prelie_algebra.FreePreLieAlgebra":{nap_product_on_basis:[16,2,1,""],nap_product:[16,2,1,""],an_element:[16,2,1,""],algebra_generators:[16,2,1,""],gens:[16,2,1,""],degree_on_basis:[16,2,1,""],variable_names:[16,2,1,""],pre_Lie_product_on_basis:[16,2,1,""],product_on_basis:[16,2,1,""],some_elements:[16,2,1,""],gen:[16,2,1,""],pre_Lie_product:[16,2,1,""]},"sage.combinat.yang_baxter_graph":{YangBaxterGraph:[288,1,1,""],YangBaxterGraph_generic:[288,3,1,""],SwapIncreasingOperator:[288,3,1,""],YangBaxterGraph_partition:[288,3,1,""],SwapOperator:[288,3,1,""]},"sage.combinat.root_system.integrable_representations":{IntegrableRepresentation:[101,3,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_h":{Element:[92,3,1,""]},"sage.combinat.rigged_configurations.rc_infinity":{InfinityCrystalOfRiggedConfigurations:[76,3,1,""],InfinityCrystalOfNonSimplyLacedRC:[76,3,1,""]},"sage.combinat.sloane_functions.A001110":{g:[56,2,1,""]},"sage.combinat.root_system.branching_rules.BranchingRule":{describe:[160,2,1,""],Stype:[160,2,1,""],branch:[160,2,1,""],Rtype:[160,2,1,""]},"sage.combinat.words.paths":{FiniteWordPath_hexagonal_grid_str:[311,3,1,""],FiniteWordPath_3d:[311,3,1,""],FiniteWordPath_triangle_grid_callable:[311,3,1,""],FiniteWordPath_2d_tuple:[311,3,1,""],FiniteWordPath_square_grid_tuple:[311,3,1,""],FiniteWordPath_square_grid_callable:[311,3,1,""],FiniteWordPath_cube_grid_list:[311,3,1,""],WordPaths_cube_grid:[311,3,1,""],FiniteWordPath_triangle_grid_iter_with_caching:[311,3,1,""],FiniteWordPath_north_east_callable_with_caching:[311,3,1,""],WordPaths_all:[311,3,1,""],FiniteWordPath_2d_callable_with_caching:[311,3,1,""],FiniteWordPath_dyck_str:[311,3,1,""],FiniteWordPath_hexagonal_grid_iter_with_caching:[311,3,1,""],FiniteWordPath_all:[311,3,1,""],FiniteWordPath_square_grid_iter_with_caching:[311,3,1,""],WordPaths_square_grid:[311,3,1,""],FiniteWordPath_dyck_callable_with_caching:[311,3,1,""],FiniteWordPath_north_east_list:[311,3,1,""],FiniteWordPath_3d_str:[311,3,1,""],FiniteWordPath_all_str:[311,3,1,""],FiniteWordPath_cube_grid_callable_with_caching:[311,3,1,""],FiniteWordPath_north_east_tuple:[311,3,1,""],FiniteWordPath_all_callable_with_caching:[311,3,1,""],FiniteWordPath_dyck_iter:[311,3,1,""],FiniteWordPath_all_tuple:[311,3,1,""],FiniteWordPath_3d_iter:[311,3,1,""],FiniteWordPath_square_grid_callable_with_caching:[311,3,1,""],FiniteWordPath_triangle_grid_tuple:[311,3,1,""],FiniteWordPath_3d_list:[311,3,1,""],WordPaths_hexagonal_grid:[311,3,1,""],FiniteWordPath_dyck_list:[311,3,1,""],FiniteWordPath_hexagonal_grid:[311,3,1,""],FiniteWordPath_all_iter:[311,3,1,""],FiniteWordPath_cube_grid_tuple:[311,3,1,""],FiniteWordPath_north_east_callable:[311,3,1,""],FiniteWordPath_north_east_str:[311,3,1,""],FiniteWordPath_2d_callable:[311,3,1,""],FiniteWordPath_cube_grid_iter_with_caching:[311,3,1,""],FiniteWordPath_all_list:[311,3,1,""],FiniteWordPath_triangle_grid_iter:[311,3,1,""],FiniteWordPath_hexagonal_grid_list:[311,3,1,""],FiniteWordPath_north_east_iter:[311,3,1,""],FiniteWordPath_triangle_grid_str:[311,3,1,""],FiniteWordPath_square_grid_list:[311,3,1,""],FiniteWordPath_hexagonal_grid_tuple:[311,3,1,""],FiniteWordPath_square_grid:[311,3,1,""],FiniteWordPath_dyck:[311,3,1,""],FiniteWordPath_hexagonal_grid_iter:[311,3,1,""],FiniteWordPath_3d_tuple:[311,3,1,""],WordPaths_triangle_grid:[311,3,1,""],FiniteWordPath_dyck_tuple:[311,3,1,""],FiniteWordPath_dyck_callable:[311,3,1,""],WordPaths:[311,1,1,""],FiniteWordPath_all_iter_with_caching:[311,3,1,""],FiniteWordPath_3d_callable:[311,3,1,""],FiniteWordPath_north_east_iter_with_caching:[311,3,1,""],FiniteWordPath_3d_iter_with_caching:[311,3,1,""],FiniteWordPath_2d:[311,3,1,""],FiniteWordPath_cube_grid_str:[311,3,1,""],FiniteWordPath_3d_callable_with_caching:[311,3,1,""],WordPaths_dyck:[311,3,1,""],FiniteWordPath_2d_str:[311,3,1,""],FiniteWordPath_2d_iter:[311,3,1,""],FiniteWordPath_cube_grid_callable:[311,3,1,""],FiniteWordPath_cube_grid_iter:[311,3,1,""],FiniteWordPath_cube_grid:[311,3,1,""],FiniteWordPath_square_grid_iter:[311,3,1,""],FiniteWordPath_triangle_grid:[311,3,1,""],FiniteWordPath_triangle_grid_callable_with_caching:[311,3,1,""],FiniteWordPath_triangle_grid_list:[311,3,1,""],FiniteWordPath_2d_list:[311,3,1,""],FiniteWordPath_square_grid_str:[311,3,1,""],WordPaths_north_east:[311,3,1,""],FiniteWordPath_2d_iter_with_caching:[311,3,1,""],FiniteWordPath_hexagonal_grid_callable:[311,3,1,""],FiniteWordPath_all_callable:[311,3,1,""],FiniteWordPath_north_east:[311,3,1,""],FiniteWordPath_hexagonal_grid_callable_with_caching:[311,3,1,""],FiniteWordPath_dyck_iter_with_caching:[311,3,1,""]},"sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative":{coproduct_on_basis:[116,2,1,""]},"sage.combinat.dyck_word.DyckWord_complete":{from_Catalan_code:[256,5,1,""],pyramid_weight:[256,2,1,""],list_parking_functions:[256,2,1,""],to_Catalan_code:[256,2,1,""],number_of_parking_functions:[256,2,1,""],bounce:[256,2,1,""],to_alternating_sign_matrix:[256,2,1,""],dinv:[256,2,1,""],to_permutation:[256,2,1,""],area:[256,2,1,""],characteristic_symmetric_function:[256,2,1,""],semilength:[256,2,1,""],bounce_area_to_area_dinv_map:[256,2,1,""],from_non_decreasing_parking_function:[256,5,1,""],to_noncrossing_permutation:[256,2,1,""],to_non_decreasing_parking_function:[256,2,1,""],to_partition:[256,2,1,""],from_area_sequence:[256,5,1,""],to_pair_of_standard_tableaux:[256,2,1,""],number_of_tunnels:[256,2,1,""],to_132_avoiding_permutation:[256,2,1,""],to_triangulation:[256,2,1,""],major_index:[256,2,1,""],to_312_avoiding_permutation:[256,2,1,""],to_321_avoiding_permutation:[256,2,1,""],decomposition_reverse:[256,2,1,""],area_dinv_to_bounce_area_map:[256,2,1,""],reverse:[256,2,1,""],to_triangulation_as_graph:[256,2,1,""],first_return_decomposition:[256,2,1,""],to_noncrossing_partition:[256,2,1,""],tunnels:[256,2,1,""],bounce_path:[256,2,1,""],to_ordered_tree:[256,2,1,""],reading_permutation:[256,2,1,""]},"sage.combinat.partition.Partitions_starting":{next:[306,2,1,""],first:[306,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods":{from_translation:[241,2,1,""],from_affine_weyl:[241,2,1,""],from_reduced_word:[241,2,1,""],from_dual_translation:[241,2,1,""],from_dual_classical_weyl:[241,2,1,""],simple_reflection:[241,2,1,""],from_classical_weyl:[241,2,1,""],from_fundamental:[241,2,1,""],simple_reflections:[241,2,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.elementary.Element":{to_symmetric_function:[115,2,1,""],omega:[115,2,1,""]},"sage.combinat.posets.hasse_diagram":{HasseDiagram:[304,3,1,""]},"sage.combinat.sf.hall_littlewood.HallLittlewood_generic.Element":{scalar:[83,2,1,""],expand:[83,2,1,""],scalar_hl:[83,2,1,""]},"sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA":{next_state:[105,2,1,""]},"sage.combinat.root_system.cartan_type.CartanType_affine":{a:[291,2,1,""],basic_untwisted:[291,2,1,""],c:[291,2,1,""],is_affine:[291,2,1,""],special_node:[291,2,1,""],classical:[291,2,1,""],special_nodes:[291,2,1,""],is_finite:[291,2,1,""],other_affinization:[291,2,1,""],acheck:[291,2,1,""],is_untwisted_affine:[291,2,1,""],row_annihilator:[291,2,1,""],col_annihilator:[291,2,1,""],AmbientSpace:[291,4,1,""],translation_factors:[291,2,1,""]},"sage.combinat.combination.Combinations_setk":{list:[15,2,1,""],unrank:[15,2,1,""],rank:[15,2,1,""]},"sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization":{finite_tensor_product:[26,2,1,""],Element:[26,3,1,""]},"sage.combinat.finite_class":{FiniteCombinatorialClass:[145,3,1,""],FiniteCombinatorialClass_l:[145,4,1,""]},"sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Even":{from_virtual:[310,2,1,""],to_virtual:[310,2,1,""],cardinality:[310,2,1,""],virtual:[310,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twistedElement":{f0:[106,2,1,""],epsilon0:[106,2,1,""],e0:[106,2,1,""],phi0:[106,2,1,""]},"sage.combinat.ncsf_qsym.ncsf":{NonCommutativeSymmetricFunctions:[140,3,1,""]},"sage.combinat.crystals.letters.Letter":{value:[290,4,1,""]},"sage.combinat.similarity_class_type.PrimarySimilarityClassType":{degree:[222,2,1,""],centralizer_algebra_dim:[222,2,1,""],partition:[222,2,1,""],centralizer_group_card:[222,2,1,""],statistic:[222,2,1,""],size:[222,2,1,""]},"sage.combinat.permutation_nk":{PermutationsNK:[177,1,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases":{super_categories:[140,2,1,""],ElementMethods:[140,3,1,""],ParentMethods:[140,3,1,""]},"sage.combinat.set_partition_ordered.OrderedSetPartitions_sn":{cardinality:[242,2,1,""]},"sage.combinat.root_system.type_C.AmbientSpace":{negative_roots:[238,2,1,""],positive_roots:[238,2,1,""],dimension:[238,2,1,""],fundamental_weight:[238,2,1,""],root:[238,2,1,""],simple_root:[238,2,1,""]},"sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunction":{to_dyck_word:[2,2,1,""],from_dyck_word:[2,5,1,""]},"sage.combinat.rigged_configurations.rigged_configuration_element.KRRCSimplyLacedElement":{cc:[220,2,1,""],charge:[220,2,1,""],cocharge:[220,2,1,""]},"sage.combinat.derangements":{Derangements:[178,3,1,""],Derangement:[178,3,1,""]},"sage.combinat.skew_tableau.SemistandardSkewTableaux_size":{cardinality:[122,2,1,""]},"sage.combinat.rigged_configurations.bij_type_A":{RCToKRTBijectionTypeA:[105,3,1,""],KRTToRCBijectionTypeA:[105,3,1,""]},"sage.combinat.rigged_configurations.bij_type_B":{RCToKRTBijectionTypeB:[104,3,1,""],KRTToRCBijectionTypeB:[104,3,1,""]},"sage.combinat.rigged_configurations.bij_type_C":{RCToKRTBijectionTypeC:[103,3,1,""],KRTToRCBijectionTypeC:[103,3,1,""]},"sage.combinat.rigged_configurations.bij_type_D":{KRTToRCBijectionTypeD:[109,3,1,""],RCToKRTBijectionTypeD:[109,3,1,""]},"sage.combinat.ncsym.bases.NCSymBases.ParentMethods":{internal_coproduct_by_coercion:[297,2,1,""],primitive:[297,2,1,""],internal_coproduct:[297,2,1,""],from_symmetric_function:[297,2,1,""],internal_coproduct_on_basis:[297,2,1,""]},"sage.combinat.abstract_tree.AbstractClonableTree":{check:[84,2,1,""]},"sage.combinat.split_nk":{SplitNK:[138,1,1,""]},"sage.combinat.words.words.FiniteWords_length_k_over_OrderedAlphabet":{iterate_by_length:[59,2,1,""],cardinality:[59,2,1,""],list:[59,2,1,""],random_element:[59,2,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors":{max_length:[225,2,1,""],generating_series:[225,2,1,""],elements:[225,2,1,""],default_weight:[225,2,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods":{duality_pairing:[201,2,1,""],sum_of_partition_rearrangements:[201,2,1,""],duality_pairing_matrix:[201,2,1,""],degree_negation:[201,2,1,""],alternating_sum_of_fatter_compositions:[201,2,1,""],alternating_sum_of_compositions:[201,2,1,""],duality_pairing_by_coercion:[201,2,1,""],degree_on_basis:[201,2,1,""],one_basis:[201,2,1,""],alternating_sum_of_finer_compositions:[201,2,1,""],sum_of_finer_compositions:[201,2,1,""],sum_of_fatter_compositions:[201,2,1,""],counit_on_basis:[201,2,1,""],skew:[201,2,1,""]},"sage.combinat.composition_tableau.CompositionTableaux":{Element:[166,4,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_ht.Element":{nabla:[92,2,1,""]},"sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials":{weight_lattice_realization:[221,2,1,""],cardinality:[221,2,1,""]},"sage.combinat.rigged_configurations.bij_infinity":{MLTToRCBijectionTypeD:[10,3,1,""],MLTToRCBijectionTypeB:[10,3,1,""],FromRCIsomorphism:[10,3,1,""],FromTableauIsomorphism:[10,3,1,""],RCToMLTBijectionTypeB:[10,3,1,""],RCToMLTBijectionTypeD:[10,3,1,""]},"sage.combinat.crystals.alcove_path.CrystalOfAlcovePaths":{weight_lattice_realization:[132,2,1,""],digraph_fast:[132,2,1,""],vertices:[132,2,1,""],Element:[132,4,1,""]},"sage.combinat.sf.sf":{SymmetricFunctions:[283,3,1,""],SymmetricaConversionOnBasis:[283,3,1,""]},"sage.combinat.root_system.type_B.CartanType":{PieriFactors:[239,4,1,""],coxeter_number:[239,2,1,""],dual_coxeter_number:[239,2,1,""],dynkin_diagram:[239,2,1,""],ascii_art:[239,2,1,""],dual:[239,2,1,""],AmbientSpace:[239,4,1,""]},"sage.combinat.binary_tree.BinaryTrees":{leaf:[285,2,1,""]},"sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWalls":{Element:[108,4,1,""]},"sage.combinat.combinat.CombinatorialClass":{map:[171,2,1,""],rank:[171,2,1,""],random:[171,2,1,""],last:[171,2,1,""],Element:[171,4,1,""],union:[171,2,1,""],is_finite:[171,2,1,""],list:[171,2,1,""],random_element:[171,2,1,""],next:[171,2,1,""],filter:[171,2,1,""],element_class:[171,2,1,""],unrank:[171,2,1,""],cardinality:[171,2,1,""],first:[171,2,1,""],previous:[171,2,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_odd":{RCToKRTBijectionTypeA2Odd:[85,3,1,""],KRTToRCBijectionTypeA2Odd:[85,3,1,""]},"sage.combinat.partition_algebra.SetPartitionsRk_k":{cardinality:[169,2,1,""]},"sage.combinat.tableau.SemistandardTableaux":{Element:[7,4,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_Cn":{classical_decomposition:[106,2,1,""],from_pm_diagram_to_highest_weight_vector:[106,2,1,""],from_highest_weight_vector_to_pm_diagram:[106,2,1,""],Element:[106,4,1,""]},"sage.combinat.set_partition_ordered.OrderedSetPartitions":{Element:[242,4,1,""]},"sage.combinat.abstract_tree":{AbstractClonableTree:[84,3,1,""],AbstractLabelledClonableTree:[84,3,1,""],AbstractTree:[84,3,1,""],from_hexacode:[84,1,1,""],AbstractLabelledTree:[84,3,1,""]},"sage.combinat.affine_permutation.AffinePermutationGroupGeneric":{reflection_index_set:[287,2,1,""],classical:[287,2,1,""],cartan_matrix:[287,2,1,""],index_set:[287,2,1,""],rank:[287,2,1,""],weyl_group:[287,2,1,""],from_word:[287,2,1,""],random_element:[287,2,1,""],is_crystallographic:[287,2,1,""],cartan_type:[287,2,1,""]},"sage.combinat.diagram_algebras.SubPartitionAlgebra":{retract:[186,2,1,""],lift:[186,2,1,""],ambient:[186,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement":{has_descent:[241,2,1,""],to_affine_weyl_right:[241,2,1,""],to_fundamental_group:[241,2,1,""],action_on_affine_roots:[241,2,1,""]},"sage.combinat.e_one_star.Patch":{plot:[93,2,1,""],occurrences_of:[93,2,1,""],translate:[93,2,1,""],union:[93,2,1,""],repaint:[93,2,1,""],faces_of_vector:[93,2,1,""],faces_of_color:[93,2,1,""],faces_of_type:[93,2,1,""],plot3d:[93,2,1,""],difference:[93,2,1,""],dimension:[93,2,1,""],plot_tikz:[93,2,1,""]},"sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableauxTypeD.Element":{e:[296,2,1,""],f:[296,2,1,""]},"sage.combinat.sloane_functions":{A001110:[56,3,1,""],recur_gen2:[56,1,1,""],recur_gen3:[56,1,1,""],RecurrenceSequence:[56,3,1,""],A001055:[56,3,1,""],A005117:[56,3,1,""],A002378:[56,3,1,""],ExtremesOfPermanentsSequence2:[56,3,1,""],A002275:[56,3,1,""],A006882:[56,3,1,""],A000261:[56,3,1,""],A109814:[56,3,1,""],ExtremesOfPermanentsSequence:[56,3,1,""],A001358:[56,3,1,""],A020639:[56,3,1,""],RecurrenceSequence2:[56,3,1,""],A000069:[56,3,1,""],A000100:[56,3,1,""],A000583:[56,3,1,""],A008683:[56,3,1,""],A000587:[56,3,1,""],A000108:[56,3,1,""],A008275:[56,3,1,""],A079923:[56,3,1,""],A079922:[56,3,1,""],A001109:[56,3,1,""],A008277:[56,3,1,""],A015530:[56,3,1,""],A001227:[56,3,1,""],A001221:[56,3,1,""],A005101:[56,3,1,""],A001222:[56,3,1,""],A001189:[56,3,1,""],A000668:[56,3,1,""],A000217:[56,3,1,""],A001477:[56,3,1,""],A000213:[56,3,1,""],A000110:[56,3,1,""],A000292:[56,3,1,""],A000290:[56,3,1,""],A015523:[56,3,1,""],A015521:[56,3,1,""],A000796:[56,3,1,""],A049310:[56,3,1,""],A018252:[56,3,1,""],A082411:[56,3,1,""],A000043:[56,3,1,""],A000040:[56,3,1,""],A000041:[56,3,1,""],A000045:[56,3,1,""],A000204:[56,3,1,""],A111787:[56,3,1,""],A061084:[56,3,1,""],A000120:[56,3,1,""],A000124:[56,3,1,""],A001969:[56,3,1,""],A000129:[56,3,1,""],A015531:[56,3,1,""],A000326:[56,3,1,""],A005408:[56,3,1,""],A000961:[56,3,1,""],A006318:[56,3,1,""],A000312:[56,3,1,""],A010060:[56,3,1,""],A004526:[56,3,1,""],Sloane:[56,3,1,""],recur_gen2b:[56,1,1,""],A001694:[56,3,1,""],A000035:[56,3,1,""],A000032:[56,3,1,""],A000030:[56,3,1,""],A000330:[56,3,1,""],A064553:[56,3,1,""],A001910:[56,3,1,""],A046660:[56,3,1,""],perm_mh:[56,1,1,""],A000225:[56,3,1,""],A083216:[56,3,1,""],A001157:[56,3,1,""],A000670:[56,3,1,""],A000302:[56,3,1,""],A051959:[56,3,1,""],A001909:[56,3,1,""],A000027:[56,3,1,""],A002808:[56,3,1,""],A000142:[56,3,1,""],A001006:[56,3,1,""],A001906:[56,3,1,""],A007318:[56,3,1,""],A000255:[56,3,1,""],A001147:[56,3,1,""],A000396:[56,3,1,""],A090014:[56,3,1,""],A090015:[56,3,1,""],A090016:[56,3,1,""],A000984:[56,3,1,""],A090010:[56,3,1,""],A090012:[56,3,1,""],A090013:[56,3,1,""],A083104:[56,3,1,""],A083105:[56,3,1,""],A083103:[56,3,1,""],A000010:[56,3,1,""],A001836:[56,3,1,""],A000012:[56,3,1,""],A000015:[56,3,1,""],A000016:[56,3,1,""],A006530:[56,3,1,""],A015551:[56,3,1,""],A000153:[56,3,1,""],A000085:[56,3,1,""],A000244:[56,3,1,""],A001405:[56,3,1,""],A002113:[56,3,1,""],A002110:[56,3,1,""],A003418:[56,3,1,""],A000166:[56,3,1,""],A000169:[56,3,1,""],A005843:[56,3,1,""],A000008:[56,3,1,""],A000009:[56,3,1,""],A000007:[56,3,1,""],A000004:[56,3,1,""],A000005:[56,3,1,""],A000001:[56,3,1,""],A000165:[56,3,1,""],A001045:[56,3,1,""],A055790:[56,3,1,""],A000203:[56,3,1,""],A000578:[56,3,1,""],A000272:[56,3,1,""],A111775:[56,3,1,""],A111774:[56,3,1,""],SloaneSequence:[56,3,1,""],A000720:[56,3,1,""],A002620:[56,3,1,""],A000079:[56,3,1,""],ExponentialNumbers:[56,3,1,""],A000073:[56,3,1,""],A005100:[56,3,1,""],A001333:[56,3,1,""],A004086:[56,3,1,""]},"sage.combinat.sf.jack.JackPolynomials_p":{scalar_jack_basis:[309,2,1,""],Element:[309,3,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_dual":{RCToKRTBijectionTypeA2Dual:[181,3,1,""],KRTToRCBijectionTypeA2Dual:[181,3,1,""]},"sage.combinat.ncsym.bases.NCSymDualBases":{super_categories:[297,2,1,""]},"sage.combinat.cluster_algebra_quiver":{all:[202,0,0,"-"],quiver:[217,0,0,"-"],mutation_class:[279,0,0,"-"],cluster_seed:[319,0,0,"-"],quiver_mutation_type:[35,0,0,"-"],mutation_type:[120,0,0,"-"],"__init__":[51,0,0,"-"]},"sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement":{e:[254,2,1,""],f:[254,2,1,""]},"sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element":{adams_operation:[68,2,1,""],restrict_partition_lengths:[68,2,1,""],scalar:[68,2,1,""],internal_coproduct:[68,2,1,""],scalar_t:[68,2,1,""],itensor:[68,2,1,""],scalar_hl:[68,2,1,""],skew_by:[68,2,1,""],hl_creation_operator:[68,2,1,""],theta_qt:[68,2,1,""],omega_involution:[68,2,1,""],kronecker_coproduct:[68,2,1,""],scalar_qt:[68,2,1,""],reduced_kronecker_product:[68,2,1,""],restrict_parts:[68,2,1,""],verschiebung:[68,2,1,""],degree:[68,2,1,""],is_schur_positive:[68,2,1,""],arithmetic_product:[68,2,1,""],kronecker_product:[68,2,1,""],restrict_degree:[68,2,1,""],derivative_with_respect_to_p1:[68,2,1,""],internal_product:[68,2,1,""],theta:[68,2,1,""],omega_qt:[68,2,1,""],omega:[68,2,1,""],expand:[68,2,1,""],frobenius:[68,2,1,""],inner_tensor:[68,2,1,""],nabla:[68,2,1,""],plethysm:[68,2,1,""],scalar_jack:[68,2,1,""],left_padded_kronecker_product:[68,2,1,""],inner_plethysm:[68,2,1,""],bernstein_creation_operator:[68,2,1,""]},"sage.combinat.sf.llt.LLT_class":{base_ring:[4,2,1,""],level:[4,2,1,""],symmetric_function_ring:[4,2,1,""],hcospin:[4,2,1,""],cospin:[4,2,1,""],spin_square:[4,2,1,""],hspin:[4,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group":{ExtendedAffineWeylGroup:[241,1,1,""],ExtendedAffineWeylGroup_Class:[241,3,1,""]},"sage.combinat.species.series.LazyPowerSeriesRing":{term:[289,2,1,""],identity_element:[289,2,1,""],sum:[289,2,1,""],product_generator:[289,2,1,""],zero:[289,2,1,""],ngens:[289,2,1,""],sum_generator:[289,2,1,""],gen:[289,2,1,""],zero_element:[289,2,1,""]},"sage.combinat.crystals.tensor_product.FullTensorProductOfCrystals":{weight_lattice_realization:[21,2,1,""],cardinality:[21,2,1,""]},"sage.combinat.words.suffix_trees.SuffixTrie":{plot:[90,2,1,""],word:[90,2,1,""],process_letter:[90,2,1,""],show:[90,2,1,""],final_states:[90,2,1,""],active_state:[90,2,1,""],states:[90,2,1,""],node_to_word:[90,2,1,""],suffix_link:[90,2,1,""],transition_function:[90,2,1,""],to_digraph:[90,2,1,""],has_suffix:[90,2,1,""]},"sage.combinat.finite_state_machine.FSMTransition":{from_state:[184,4,1,""],to_state:[184,4,1,""],word_out:[184,4,1,""],deepcopy:[184,2,1,""],copy:[184,2,1,""],word_in:[184,4,1,""]},"sage.combinat.species.stream":{Stream_class:[182,3,1,""],Stream:[182,1,1,""]},"sage.combinat.finite_class.FiniteCombinatorialClass":{keys:[145,2,1,""],cardinality:[145,2,1,""],list:[145,2,1,""]},"sage.combinat.binary_tree.LabelledBinaryTrees":{unlabelled_trees:[285,2,1,""],labelled_trees:[285,2,1,""],Element:[285,4,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PElement":{to_translation_right:[241,2,1,""],to_classical_weyl:[241,2,1,""],has_descent:[241,2,1,""]},"sage.combinat.root_system.type_reducible":{CartanType:[302,3,1,""],AmbientSpace:[302,3,1,""]},"sage.combinat.sloane_functions.A000796":{pi:[56,2,1,""],list:[56,2,1,""]},"sage.combinat.backtrack.SearchForest":{breadth_first_search_iterator:[147,2,1,""],elements_of_depth_iterator:[147,2,1,""],children:[147,2,1,""],roots:[147,2,1,""],depth_first_search_iterator:[147,2,1,""]},"sage.combinat.k_tableau.WeakTableaux_factorized_permutation":{Element:[180,4,1,""]},"sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence":{period:[65,2,1,""],is_geometric:[65,2,1,""],is_arithmetic:[65,2,1,""],is_degenerate:[65,2,1,""],is_quasigeometric:[65,2,1,""],pthpowers:[65,2,1,""]},"sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints.Element":{check:[317,2,1,""]},"sage.combinat.crystals.littelmann_path.CrystalOfLSPaths":{weight_lattice_realization:[11,2,1,""],Element:[11,3,1,""]},"sage.combinat.finite_state_machine_generators.TransducerGenerators.RecursionRule":{k:[190,4,1,""],K:[190,4,1,""],r:[190,4,1,""],s:[190,4,1,""],t:[190,4,1,""]},"sage.combinat.partition.Partitions":{subset:[306,2,1,""],global_options:[306,1,1,""],Element:[306,4,1,""]},"sage.combinat.ribbon_tableau.RibbonTableaux_shape_weight_length":{cardinality:[117,2,1,""]},"sage.combinat.similarity_class_type.SimilarityClassType":{is_semisimple:[222,2,1,""],is_regular:[222,2,1,""],centralizer_algebra_dim:[222,2,1,""],number_of_matrices:[222,2,1,""],as_partition_dictionary:[222,2,1,""],number_of_classes:[222,2,1,""],centralizer_group_card:[222,2,1,""],statistic:[222,2,1,""],rcf:[222,2,1,""],class_card:[222,2,1,""],size:[222,2,1,""]},"sage.combinat.symmetric_group_representations.YoungRepresentation_generic":{representation_matrix_for_simple_transposition:[75,2,1,""],representation_matrix:[75,2,1,""]},"sage.combinat.finite_state_machine_generators.TransducerGenerators":{map:[190,2,1,""],GrayCode:[190,2,1,""],sub:[190,2,1,""],weight:[190,2,1,""],RecursionRule:[190,3,1,""],Recursion:[190,2,1,""],all:[190,2,1,""],add:[190,2,1,""],abs:[190,2,1,""],operator:[190,2,1,""],CountSubblockOccurrences:[190,2,1,""],any:[190,2,1,""],Identity:[190,2,1,""],Wait:[190,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Psi.Element":{verschiebung:[140,2,1,""]},"sage.combinat.set_partition_ordered.OrderedSetPartitions_s":{cardinality:[242,2,1,""]},"sage.combinat.graph_path.GraphPaths_st":{list:[200,2,1,""]},"sage.combinat.ranker":{unrank_from_list:[303,1,1,""],from_list:[303,1,1,""],unrank:[303,1,1,""],rank_from_list:[303,1,1,""],on_fly:[303,1,1,""]},"sage.combinat.cluster_algebra_quiver.quiver":{ClusterQuiver:[217,3,1,""]},"sage.combinat.posets.incidence_algebras.IncidenceAlgebra":{reduced_subalgebra:[193,2,1,""],one:[193,2,1,""],mobius:[193,2,1,""],delta:[193,2,1,""],product_on_basis:[193,2,1,""],some_elements:[193,2,1,""],zeta:[193,2,1,""],Element:[193,3,1,""],poset:[193,2,1,""]},"sage.combinat.partition.Partitions_n":{subset:[306,2,1,""],last:[306,2,1,""],random_element:[306,2,1,""],random_element_uniform:[306,2,1,""],random_element_plancherel:[306,2,1,""],next:[306,2,1,""],cardinality:[306,2,1,""],first:[306,2,1,""]},"sage.combinat.ordered_tree.OrderedTree":{normalize:[30,2,1,""],sort_key:[30,2,1,""],to_poset:[30,2,1,""],left_right_symmetry:[30,2,1,""],to_binary_tree_left_branch:[30,2,1,""],is_empty:[30,2,1,""],to_dyck_word:[30,2,1,""],to_binary_tree_right_branch:[30,2,1,""],dendrog_cmp:[30,2,1,""],dendrog_normalize:[30,2,1,""],to_undirected_graph:[30,2,1,""]},"sage.combinat.sf.ns_macdonald.LatticeDiagram":{arm_right:[12,2,1,""],a:[12,2,1,""],l:[12,2,1,""],leg:[12,2,1,""],flip:[12,2,1,""],arm:[12,2,1,""],boxes:[12,2,1,""],arm_left:[12,2,1,""],boxes_same_and_lower_right:[12,2,1,""],size:[12,2,1,""]},"sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotionElement":{f0:[265,2,1,""],epsilon0:[265,2,1,""],e0:[265,2,1,""],phi0:[265,2,1,""]},"sage.combinat.species.partition_species.PartitionSpeciesStructure":{canonical_label:[318,2,1,""],change_labels:[318,2,1,""],automorphism_group:[318,2,1,""],transport:[318,2,1,""]},"sage.combinat.sloane_functions.A000961":{list:[56,2,1,""]},"sage.combinat.hall_polynomial":{hall_polynomial:[100,1,1,""]},"sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement":{phi:[220,2,1,""],to_tensor_product_of_kirillov_reshetikhin_tableaux:[220,2,1,""],weight:[220,2,1,""],f:[220,2,1,""],complement_rigging:[220,2,1,""],epsilon:[220,2,1,""],left_split:[220,2,1,""],right_split:[220,2,1,""],to_tensor_product_of_kirillov_reshetikhin_crystals:[220,2,1,""],left_box:[220,2,1,""],delta:[220,2,1,""],e:[220,2,1,""],classical_weight:[220,2,1,""],check:[220,2,1,""]},"sage.combinat.sf.witt.SymmetricFunctionAlgebra_witt":{coproduct:[260,2,1,""],verschiebung:[260,2,1,""],from_other_uncached:[260,2,1,""]},"sage.combinat.crystals.alcove_path":{CrystalOfAlcovePathsElement:[132,3,1,""],RootsWithHeight:[132,3,1,""],RootsWithHeightElement:[132,3,1,""],compare_graphs:[132,1,1,""],CrystalOfAlcovePaths:[132,3,1,""]},"sage.combinat.composition_tableau.CompositionTableaux_shape":{an_element:[166,2,1,""]},"sage.combinat.root_system.type_D.AmbientSpace":{negative_roots:[237,2,1,""],positive_roots:[237,2,1,""],dimension:[237,2,1,""],fundamental_weight:[237,2,1,""],root:[237,2,1,""],simple_root:[237,2,1,""]},"sage.combinat.root_system.type_marked.CartanType_affine":{basic_untwisted:[89,2,1,""],special_node:[89,2,1,""],is_untwisted_affine:[89,2,1,""],classical:[89,2,1,""]},"sage.combinat.posets.linear_extensions.LinearExtensionOfPoset":{tau:[198,2,1,""],to_poset:[198,2,1,""],evacuation:[198,2,1,""],promotion:[198,2,1,""],poset:[198,2,1,""],check:[198,2,1,""]},"sage.combinat.symmetric_group_representations":{SymmetricGroupRepresentation_generic_class:[75,3,1,""],YoungRepresentations_Orthogonal:[75,3,1,""],YoungRepresentation_generic:[75,3,1,""],YoungRepresentation_Orthogonal:[75,3,1,""],SymmetricGroupRepresentations:[75,1,1,""],SpechtRepresentations:[75,3,1,""],YoungRepresentations_Seminormal:[75,3,1,""],partition_to_vector_of_contents:[75,1,1,""],SymmetricGroupRepresentation:[75,1,1,""],SymmetricGroupRepresentations_class:[75,3,1,""],SpechtRepresentation:[75,3,1,""],YoungRepresentation_Seminormal:[75,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin":{KR_type_boxElement:[106,3,1,""],horizontal_dominoes_removed:[106,1,1,""],KR_type_Cn:[106,3,1,""],vertical_dominoes_removed:[106,1,1,""],KashiwaraNakashimaTableaux:[106,1,1,""],KirillovReshetikhinGenericCrystalElement:[106,3,1,""],KR_type_vertical:[106,3,1,""],KR_type_CnElement:[106,3,1,""],KR_type_CElement:[106,3,1,""],KirillovReshetikhinGenericCrystal:[106,3,1,""],partitions_in_box:[106,1,1,""],KR_type_A2:[106,3,1,""],KirillovReshetikhinCrystalFromPromotionElement:[106,3,1,""],KR_type_Dn_twistedElement:[106,3,1,""],KR_type_E6:[106,3,1,""],KR_type_box:[106,3,1,""],KR_type_spin:[106,3,1,""],KR_type_Bn:[106,3,1,""],KR_type_C:[106,3,1,""],KR_type_A:[106,3,1,""],KirillovReshetikhinCrystal:[106,1,1,""],KR_type_D_tri1:[106,3,1,""],PMDiagram:[106,3,1,""],KR_type_BnElement:[106,3,1,""],KR_type_A2Element:[106,3,1,""],KirillovReshetikhinCrystalFromLSPaths:[106,1,1,""],KR_type_Dn_twisted:[106,3,1,""],KirillovReshetikhinCrystalFromPromotion:[106,3,1,""]},"sage.combinat.root_system.cartan_type.CartanType_standard_affine":{index_set:[291,2,1,""],special_node:[291,2,1,""],type:[291,2,1,""],rank:[291,2,1,""]},"sage.combinat.tamari_lattices":{paths_in_triangle:[164,1,1,""],GeneralizedTamariLattice:[164,1,1,""],swap:[164,1,1,""],TamariLattice:[164,1,1,""]},"sage.combinat.words.abstract_word":{Word_class:[312,3,1,""]},"sage.combinat.ordered_tree.LabelledOrderedTrees":{unlabelled_trees:[30,2,1,""],cardinality:[30,2,1,""],labelled_trees:[30,2,1,""],Element:[30,4,1,""]},"sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods":{product:[77,2,1,""],coproduct:[77,2,1,""],degree_on_basis:[77,2,1,""],retract:[77,2,1,""],one_basis:[77,2,1,""],lift:[77,2,1,""],antipode:[77,2,1,""],ambient:[77,2,1,""],indices:[77,2,1,""],counit:[77,2,1,""]},"sage.combinat.species.cycle_species":{CycleSpecies:[159,3,1,""],CycleSpecies_class:[159,4,1,""],CycleSpeciesStructure:[159,3,1,""]},"sage.combinat.composition_tableau.CompositionTableau":{pp:[166,2,1,""],weight:[166,2,1,""],shape_partition:[166,2,1,""],shape_composition:[166,2,1,""],is_standard:[166,2,1,""],descent_set:[166,2,1,""],descent_composition:[166,2,1,""],size:[166,2,1,""]},"sage.combinat.ribbon_tableau.RibbonTableaux":{from_expr:[117,2,1,""],global_options:[117,1,1,""],Element:[117,4,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods":{internal_coproduct:[272,2,1,""],omega_involution:[272,2,1,""],frobenius:[272,2,1,""],psi_involution:[272,2,1,""],star_involution:[272,2,1,""],is_symmetric:[272,2,1,""],dendriform_leq:[272,2,1,""],kronecker_coproduct:[272,2,1,""],dendriform_less:[272,2,1,""],to_symmetric_function:[272,2,1,""],expand:[272,2,1,""],adams_operation:[272,2,1,""]},"sage.combinat.vector_partition.VectorPartitions":{Element:[282,4,1,""]},"sage.combinat.matrices.hadamard_matrix":{hadamard_matrix:[81,1,1,""],H2:[81,1,1,""],H1:[81,1,1,""],normalise_hadamard:[81,1,1,""],hadamard_matrix_paleyI:[81,1,1,""],hadamard_matrix_www:[81,1,1,""],hadamard_matrix_paleyII:[81,1,1,""]},"sage.combinat.k_tableau.WeakTableau_factorized_permutation":{from_core_tableau:[180,5,1,""],to_core_tableau:[180,2,1,""],k_charge:[180,2,1,""],shape_bounded:[180,2,1,""],shape_core:[180,2,1,""],straighten_input:[180,6,1,""],check:[180,2,1,""]},"sage.combinat.sf.llt.LLT_spin":{Element:[4,3,1,""]},"sage.combinat.expnums":{expnums2:[244,1,1,""],expnums:[244,1,1,""]},"sage.combinat.matrices.dancing_links":{dlx_solver:[183,1,1,""],make_dlxwrapper:[183,1,1,""],dancing_linksWrapper:[183,3,1,""]},"sage.combinat.rigged_configurations.rigged_configuration_element.RCNonSimplyLacedElement":{to_virtual_configuration:[220,2,1,""],e:[220,2,1,""],f:[220,2,1,""]},"sage.combinat.tableau_tuple.StandardTableauTuple":{content:[301,2,1,""],restrict:[301,2,1,""],inverse:[301,2,1,""],to_chain:[301,2,1,""],dominates:[301,2,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_type_C_affine":{maximal_elements_combinatorial:[225,2,1,""],stanley_symm_poly_weight:[225,2,1,""]},"sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra.Element":{is_unit:[193,2,1,""],lift:[193,2,1,""],to_matrix:[193,2,1,""]},"sage.combinat":{all:[19,0,0,"-"],integer_matrices:[315,0,0,"-"],tableau_tuple:[301,0,0,"-"],subsets_hereditary:[37,0,0,"-"],ordered_tree:[30,0,0,"-"],combinat:[171,0,0,"-"],perfect_matching:[308,0,0,"-"],sidon_sets:[206,0,0,"-"],similarity_class_type:[222,0,0,"-"],degree_sequences:[62,0,0,"-"],partition_algebra:[169,0,0,"-"],catalog_partitions:[134,0,0,"-"],tamari_lattices:[164,0,0,"-"],finite_state_machine:[184,0,0,"-"],partitions:[209,0,0,"-"],q_bernoulli:[179,0,0,"-"],cyclic_sieving_phenomenon:[172,0,0,"-"],combination:[15,0,0,"-"],enumerated_sets:[158,0,0,"-"],free_prelie_algebra:[16,0,0,"-"],cartesian_product:[299,0,0,"-"],integer_list:[269,0,0,"-"],algebraic_combinatorics:[121,0,0,"-"],schubert_polynomial:[314,0,0,"-"],split_nk:[138,0,0,"-"],symmetric_group_algebra:[61,0,0,"-"],non_decreasing_parking_function:[2,0,0,"-"],tiling:[40,0,0,"-"],debruijn_sequence:[33,0,0,"-"],output:[321,0,0,"-"],diagram_algebras:[186,0,0,"-"],subset:[74,0,0,"-"],set_partition_ordered:[242,0,0,"-"],dict_addition:[248,0,0,"-"],backtrack:[147,0,0,"-"],skew_tableau:[122,0,0,"-"],rooted_tree:[48,0,0,"-"],integer_vector:[130,0,0,"-"],kazhdan_lusztig:[199,0,0,"-"],ribbon:[8,0,0,"-"],parking_functions:[128,0,0,"-"],yang_baxter_graph:[288,0,0,"-"],permutation_nk:[177,0,0,"-"],expnums:[244,0,0,"-"],vector_partition:[282,0,0,"-"],enumeration_mod_permgroup:[87,0,0,"-"],combinatorial_algebra:[214,0,0,"-"],gelfand_tsetlin_patterns:[58,0,0,"-"],dlx:[133,0,0,"-"],knutson_tao_puzzles:[52,0,0,"-"],ribbon_tableau:[117,0,0,"-"],ranker:[303,0,0,"-"],sloane_functions:[56,0,0,"-"],derangements:[178,0,0,"-"],combinatorial_map:[20,0,0,"-"],combinat_cython:[53,0,0,"-"],subword:[151,0,0,"-"],hall_polynomial:[100,0,0,"-"],gray_codes:[102,0,0,"-"],binary_recurrence_sequences:[65,0,0,"-"],set_partition:[229,0,0,"-"],finite_class:[145,0,0,"-"],abstract_tree:[84,0,0,"-"],finite_state_machine_generators:[190,0,0,"-"],graph_path:[200,0,0,"-"],baxter_permutations:[18,0,0,"-"],permutation:[286,0,0,"-"],descent_algebra:[305,0,0,"-"],lyndon_word:[98,0,0,"-"],q_analogues:[43,0,0,"-"],shuffle:[148,0,0,"-"],interval_posets:[185,0,0,"-"],family:[95,0,0,"-"],misc:[154,0,0,"-"],e_one_star:[93,0,0,"-"],integer_vectors_mod_permgroup:[317,0,0,"-"],affine_permutation:[287,0,0,"-"],tools:[320,0,0,"-"],ribbon_shaped_tableau:[224,0,0,"-"],partition_tuple:[293,0,0,"-"],permutation_cython:[257,0,0,"-"],tuple:[31,0,0,"-"],multichoose_nk:[96,0,0,"-"],symmetric_group_representations:[75,0,0,"-"],composition_tableau:[166,0,0,"-"],dyck_word:[256,0,0,"-"],composition_signed:[126,0,0,"-"],skew_partition:[211,0,0,"-"],free_module:[141,0,0,"-"],alternating_sign_matrix:[212,0,0,"-"],binary_tree:[285,0,0,"-"],choose_nk:[63,0,0,"-"],integer_vector_weighted:[114,0,0,"-"],"__init__":[267,0,0,"-"],k_tableau:[180,0,0,"-"],restricted_growth:[118,0,0,"-"],counting:[210,0,0,"-"],rsk:[262,0,0,"-"],tableau:[7,0,0,"-"],tutorial:[253,0,0,"-"],subsets_pairwise:[111,0,0,"-"],composition:[22,0,0,"-"],six_vertex_model:[223,0,0,"-"],core:[99,0,0,"-"],quickref:[47,0,0,"-"],shard_order:[300,0,0,"-"],partition:[306,0,0,"-"],necklace:[187,0,0,"-"]},"sage.combinat.rigged_configurations.rigged_configuration_element.RCHighestWeightElement":{check:[220,2,1,""],weight:[220,2,1,""],f:[220,2,1,""]},"sage.combinat.permutation.Permutations_set":{cardinality:[286,2,1,""],random_element:[286,2,1,""],Element:[286,3,1,""]},"sage.combinat.sf.ns_macdonald.NonattackingBacktracker":{get_next_pos:[12,2,1,""]},"sage.combinat.tools":{transitive_ideal:[320,1,1,""]},"sage.combinat.posets.posets.FinitePoset":{flag_h_polynomial:[163,2,1,""],coxeter_transformation:[163,2,1,""],gt:[163,2,1,""],show:[163,2,1,""],ge:[163,2,1,""],intervals:[163,2,1,""],cuts:[163,2,1,""],is_incomparable_chain_free:[163,2,1,""],with_linear_extension:[163,2,1,""],maximal_antichains:[163,2,1,""],isomorphic_subposets_iterator:[163,2,1,""],is_greater_than:[163,2,1,""],comparability_graph:[163,2,1,""],lt:[163,2,1,""],is_parent_of:[163,2,1,""],random_subposet:[163,2,1,""],subposet:[163,2,1,""],lower_covers_iterator:[163,2,1,""],is_chain_of_poset:[163,2,1,""],has_bottom:[163,2,1,""],canonical_label:[163,2,1,""],mobius_function_matrix:[163,2,1,""],order_polytope:[163,2,1,""],isomorphic_subposets:[163,2,1,""],maximal_elements:[163,2,1,""],is_EL_labelling:[163,2,1,""],lower_covers:[163,2,1,""],intervals_iterator:[163,2,1,""],f_polynomial:[163,2,1,""],connected_components:[163,2,1,""],hasse_diagram:[163,2,1,""],ordinal_product:[163,2,1,""],list:[163,2,1,""],compare_elements:[163,2,1,""],order_ideal:[163,2,1,""],minimal_elements:[163,2,1,""],is_chain:[163,2,1,""],random_order_ideal:[163,2,1,""],characteristic_polynomial:[163,2,1,""],intervals_number:[163,2,1,""],bottom:[163,2,1,""],upper_covers_iterator:[163,2,1,""],greene_shape:[163,2,1,""],level_sets:[163,2,1,""],evacuation:[163,2,1,""],is_ranked:[163,2,1,""],chains:[163,2,1,""],incomparability_graph:[163,2,1,""],is_lequal:[163,2,1,""],incidence_algebra:[163,2,1,""],chain_polytope:[163,2,1,""],relations_iterator:[163,2,1,""],le:[163,2,1,""],chain_polynomial:[163,2,1,""],antichains_iterator:[163,2,1,""],is_graded:[163,2,1,""],relabel:[163,2,1,""],order_polynomial:[163,2,1,""],promotion:[163,2,1,""],frank_network:[163,2,1,""],is_join_semilattice:[163,2,1,""],rank:[163,2,1,""],height:[163,2,1,""],plot:[163,2,1,""],p_partition_enumerator:[163,2,1,""],to_graph:[163,2,1,""],top:[163,2,1,""],relations:[163,2,1,""],width:[163,2,1,""],is_less_than:[163,2,1,""],rank_function:[163,2,1,""],order_complex:[163,2,1,""],antichains:[163,2,1,""],unwrap:[163,2,1,""],lequal_matrix:[163,2,1,""],maximal_chains:[163,2,1,""],cardinality:[163,2,1,""],zeta_polynomial:[163,2,1,""],cover_relations:[163,2,1,""],join_matrix:[163,2,1,""],graphviz_string:[163,2,1,""],meet_matrix:[163,2,1,""],is_bounded:[163,2,1,""],is_gequal:[163,2,1,""],mobius_function:[163,2,1,""],order_filter:[163,2,1,""],covers:[163,2,1,""],closed_interval:[163,2,1,""],is_linear_extension:[163,2,1,""],dual:[163,2,1,""],relations_number:[163,2,1,""],dilworth_decomposition:[163,2,1,""],flag_f_polynomial:[163,2,1,""],completion_by_cuts:[163,2,1,""],is_isomorphic:[163,2,1,""],linear_extension:[163,2,1,""],product:[163,2,1,""],upper_covers:[163,2,1,""],Element:[163,4,1,""],linear_extensions:[163,2,1,""],cover_relations_graph:[163,2,1,""],h_polynomial:[163,2,1,""],has_isomorphic_subposet:[163,2,1,""],has_top:[163,2,1,""],is_meet_semilattice:[163,2,1,""],interval:[163,2,1,""],is_slender:[163,2,1,""],ordinal_sum:[163,2,1,""],open_interval:[163,2,1,""],cover_relations_iterator:[163,2,1,""],disjoint_union:[163,2,1,""],is_connected:[163,2,1,""],dimension:[163,2,1,""]},"sage.combinat.yang_baxter_graph.SwapOperator":{position:[288,2,1,""]},"sage.combinat.subword.Subwords_wk":{cardinality:[151,2,1,""],last:[151,2,1,""],random_element:[151,2,1,""],first:[151,2,1,""]},"sage.combinat.abstract_tree.AbstractLabelledClonableTree":{map_labels:[84,2,1,""],set_root_label:[84,2,1,""],set_label:[84,2,1,""]},"sage.combinat.posets.posets":{is_poset:[163,1,1,""],FinitePoset:[163,3,1,""],Poset:[163,1,1,""],FinitePosets_n:[163,3,1,""]},"sage.combinat.partition_tuple":{PartitionTuples_level:[293,3,1,""],PartitionTuples:[293,3,1,""],PartitionTuples_size:[293,3,1,""],PartitionTuples_all:[293,3,1,""],PartitionTuples_level_size:[293,3,1,""],PartitionTuple:[293,3,1,""]},"sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ElementMethods":{is_schur_positive:[298,2,1,""],hl_creation_operator:[298,2,1,""],omega_t_inverse:[298,2,1,""],scalar:[298,2,1,""],omega:[298,2,1,""],expand:[298,2,1,""]},"sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w.Element":{to_symmetric_function:[27,2,1,""],is_symmetric:[27,2,1,""],expand:[27,2,1,""]},"sage.combinat.permutation.CyclicPermutations":{list:[286,2,1,""],iterator:[286,2,1,""]},"sage.combinat.root_system.root_space.RootSpace":{to_coroot_space_morphism:[155,2,1,""],simple_root:[155,2,1,""],to_ambient_space_morphism:[155,2,1,""],Element:[155,4,1,""]},"sage.combinat.root_system.cartan_matrix":{cartan_matrix:[69,1,1,""],is_generalized_cartan_matrix:[69,1,1,""],CartanMatrix:[69,3,1,""],find_cartan_type_from_matrix:[69,1,1,""]},"sage.combinat.six_vertex_model.SixVertexModel":{partition_function:[223,2,1,""],boundary_conditions:[223,2,1,""],Element:[223,4,1,""]},"sage.combinat.perfect_matching":{PerfectMatchings:[308,3,1,""],PerfectMatching:[308,3,1,""]},"sage.combinat.sf.jack":{normalize_coefficients:[309,1,1,""],SymmetricFunctionAlgebra_zonal:[309,3,1,""],JackPolynomials_q:[309,3,1,""],part_scalar_jack:[309,1,1,""],JackPolynomials_p:[309,3,1,""],JackPolynomials_generic:[309,3,1,""],JackPolynomials_qp:[309,3,1,""],JackPolynomials_j:[309,3,1,""],c1:[309,1,1,""],c2:[309,1,1,""],Jack:[309,3,1,""]},"sage.combinat.tableau_tuple.TableauTuples":{level:[301,2,1,""],global_options:[301,1,1,""],list:[301,2,1,""],level_one_parent_class:[301,4,1,""],Element:[301,4,1,""],size:[301,2,1,""]},"sage.combinat.root_system.weyl_characters.WeightRing.Element":{scale:[228,2,1,""],demazure_lusztig:[228,2,1,""],shift:[228,2,1,""],character:[228,2,1,""],demazure:[228,2,1,""],weyl_group_action:[228,2,1,""],cartan_type:[228,2,1,""]},"sage.combinat.descent_algebra.DescentAlgebraBases.ElementMethods":{to_symmetric_group_algebra:[305,2,1,""]},"sage.combinat.partitions":{run_tests:[209,1,1,""],ZS1_iterator:[209,1,1,""],ZS1_iterator_nk:[209,1,1,""],number_of_partitions:[209,1,1,""]},"sage.combinat.ncsym.bases.NCSymBases":{super_categories:[297,2,1,""],ElementMethods:[297,3,1,""],ParentMethods:[297,3,1,""]},"sage.combinat.integer_matrices":{IntegerMatrices:[315,3,1,""],integer_matrices_generator:[315,1,1,""]},"sage.combinat.crystals.littelmann_path":{CrystalOfLSPaths:[11,3,1,""],CrystalOfProjectedLevelZeroLSPaths:[11,3,1,""]},"sage.combinat.species.species.GenericCombinatorialSpecies":{generating_series:[66,2,1,""],product:[66,2,1,""],weighted:[66,2,1,""],functorial_composition:[66,2,1,""],algebraic_equation_system:[66,2,1,""],digraph:[66,2,1,""],restricted:[66,2,1,""],sum:[66,2,1,""],is_weighted:[66,2,1,""],cycle_index_series:[66,2,1,""],isotypes:[66,2,1,""],isotype_generating_series:[66,2,1,""],weight_ring:[66,2,1,""],structures:[66,2,1,""],composition:[66,2,1,""]},"sage.combinat.root_system.type_A.AmbientSpace":{smallest_base_ring:[240,5,1,""],negative_roots:[240,2,1,""],positive_roots:[240,2,1,""],det:[240,2,1,""],dimension:[240,2,1,""],simple_root:[240,2,1,""],root:[240,2,1,""],fundamental_weight:[240,2,1,""],highest_root:[240,2,1,""]},"sage.combinat.crystals.affine.AffineCrystalFromClassicalElement":{f0:[265,2,1,""],phi:[265,2,1,""],e:[265,2,1,""],f:[265,2,1,""],epsilon:[265,2,1,""],pp:[265,2,1,""],epsilon0:[265,2,1,""],lift:[265,2,1,""],phi0:[265,2,1,""],classical_weight:[265,2,1,""],e0:[265,2,1,""]},"sage.combinat.root_system.cartan_type.CartanType_simply_laced":{is_simply_laced:[291,2,1,""],dual:[291,2,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.Realizations.ParentMethods":{internal_product_by_coercion:[201,2,1,""]},"sage.combinat.sloane_functions.A006882":{df:[56,2,1,""],list:[56,2,1,""]},"sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced":{from_virtual:[310,2,1,""],virtual:[310,2,1,""],Element:[310,4,1,""],module_generators:[310,2,1,""],to_virtual:[310,2,1,""],kleber_tree:[310,2,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions":{dual:[272,2,1,""],from_polynomial:[272,2,1,""],Monomial:[272,3,1,""],Quasisymmetric_Schur:[272,3,1,""],Bases:[272,3,1,""],dualImmaculate:[272,3,1,""],a_realization:[272,2,1,""],Fundamental:[272,3,1,""],HazewinkelLambda:[272,3,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods":{algebra_generators:[140,2,1,""],to_symmetric_function_on_generators:[140,2,1,""],algebra_morphism:[140,2,1,""],coproduct:[140,2,1,""],antipode:[140,2,1,""],product_on_basis:[140,2,1,""],to_symmetric_function:[140,2,1,""]},"sage.combinat.sf.jack.JackPolynomials_generic":{c2:[309,2,1,""],c1:[309,2,1,""],Element:[309,3,1,""],coproduct_by_coercion:[309,2,1,""],jack_family:[309,2,1,""]},"sage.combinat.set_partition.SetPartitions":{is_less_than:[229,2,1,""],is_strict_refinement:[229,2,1,""],lt:[229,2,1,""],Element:[229,4,1,""]},"sage.combinat.sloane_functions.A020639":{list:[56,2,1,""]},"sage.combinat.subword":{Subwords_wk:[151,3,1,""],smallest_positions:[151,1,1,""],Subwords:[151,1,1,""],Subwords_w:[151,3,1,""]},"sage.combinat.root_system.type_I":{CartanType:[232,3,1,""]},"sage.combinat.words.shuffle_product":{ShuffleProduct_overlapping:[34,3,1,""],ShuffleProduct_overlapping_r:[34,3,1,""],ShuffleProduct_shifted:[34,3,1,""],ShuffleProduct_w1w2:[34,3,1,""]},"sage.combinat.designs.evenly_distributed_sets":{EvenlyDistributedSetsBacktracker:[208,3,1,""]},"sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths":{one_dimensional_configuration_sum:[11,2,1,""],is_perfect:[11,2,1,""],Element:[11,3,1,""]},"sage.combinat.species.linear_order_species.LinearOrderSpeciesStructure":{canonical_label:[284,2,1,""],automorphism_group:[284,2,1,""],transport:[284,2,1,""]},"sage.combinat.words.word_char":{reversed_word_iterator:[271,1,1,""],WordDatatype_char:[271,3,1,""]},"sage.combinat.diagram_algebras.DiagramAlgebra":{product_on_basis:[186,2,1,""],one_basis:[186,2,1,""],set_partitions:[186,2,1,""],order:[186,2,1,""],Element:[186,3,1,""]},"sage.combinat.species":{all:[97,0,0,"-"],stream:[182,0,0,"-"],subset_species:[273,0,0,"-"],series:[289,0,0,"-"],misc:[54,0,0,"-"],library:[230,0,0,"-"],species:[66,0,0,"-"],"__init__":[270,0,0,"-"],generating_series:[78,0,0,"-"],product_species:[71,0,0,"-"],series_order:[316,0,0,"-"],cycle_species:[159,0,0,"-"],composition_species:[91,0,0,"-"],permutation_species:[246,0,0,"-"],set_species:[107,0,0,"-"],linear_order_species:[284,0,0,"-"],recursive_species:[161,0,0,"-"],combinatorial_logarithm:[41,0,0,"-"],structure:[149,0,0,"-"],functorial_composition_species:[294,0,0,"-"],characteristic_species:[72,0,0,"-"],empty_species:[1,0,0,"-"],partition_species:[318,0,0,"-"],sum_species:[196,0,0,"-"]},"sage.combinat.combinat.UnionCombinatorialClass":{last:[171,2,1,""],list:[171,2,1,""],rank:[171,2,1,""],unrank:[171,2,1,""],cardinality:[171,2,1,""],first:[171,2,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ElementMethods":{duality_pairing:[201,2,1,""],degree_negation:[201,2,1,""],degree:[201,2,1,""],skew_by:[201,2,1,""]},"sage.combinat.root_system.type_relabel.AmbientSpace":{simple_root:[167,2,1,""],fundamental_weight:[167,2,1,""],dimension:[167,2,1,""]},"sage.combinat.schubert_polynomial.SchubertPolynomial_class":{multiply_variable:[314,2,1,""],divided_difference:[314,2,1,""],scalar_product:[314,2,1,""],expand:[314,2,1,""]},"sage.combinat.crystals.letters.ClassicalCrystalOfLetters":{list:[290,2,1,""],lt_elements:[290,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Elementary":{Element:[140,3,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum":{antipode_on_basis:[115,2,1,""],primitive:[115,2,1,""],internal_coproduct_on_basis:[115,2,1,""],coproduct_on_basis:[115,2,1,""],Element:[115,3,1,""]},"sage.combinat.root_system.type_D_affine.CartanType":{dynkin_diagram:[45,2,1,""],ascii_art:[45,2,1,""],PieriFactors:[45,4,1,""]},"sage.combinat.binary_tree":{LabelledBinaryTree:[285,3,1,""],BinaryTree:[285,3,1,""],BinaryTrees:[285,3,1,""],LabelledBinaryTrees:[285,3,1,""],BinaryTrees_all:[285,3,1,""],BinaryTrees_size:[285,3,1,""]},"sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall":{a:[108,2,1,""],column:[108,2,1,""],pp:[108,2,1,""],e:[108,2,1,""],weight:[108,2,1,""],f:[108,2,1,""],raw_signature:[108,2,1,""],Epsilon:[108,2,1,""],signature:[108,2,1,""],generate_signature:[108,2,1,""],phi:[108,2,1,""],in_highest_weight_crystal:[108,2,1,""],content:[108,2,1,""],sum_of_weighted_row_lengths:[108,2,1,""],latex_large:[108,2,1,""],number_of_parts:[108,2,1,""],epsilon:[108,2,1,""],Phi:[108,2,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_231":{cardinality:[286,2,1,""]},"sage.combinat.sidon_sets":{sidon_sets_rec:[206,1,1,""],sidon_sets:[206,1,1,""]},"sage.combinat.tiling.Polyomino":{center:[40,2,1,""],neighbor_edges:[40,2,1,""],color:[40,2,1,""],canonical_orthogonals:[40,2,1,""],show3d:[40,2,1,""],bounding_box:[40,2,1,""],show2d:[40,2,1,""],translated:[40,2,1,""],boundary:[40,2,1,""],canonical:[40,2,1,""],translated_orthogonals:[40,2,1,""],orthogonals:[40,2,1,""]},"sage.combinat.words.finite_word":{FiniteWord_class:[42,3,1,""],CallableFromListOfWords:[42,3,1,""],Factorization:[42,3,1,""]},"sage.combinat.dlx":{DLXMatrix:[133,3,1,""],AllExactCovers:[133,1,1,""],OneExactCover:[133,1,1,""]},"sage.combinat.tableau_tuple.StandardTableauTuples_shape":{an_element:[301,2,1,""],cardinality:[301,2,1,""],last:[301,2,1,""],random_element:[301,2,1,""]},"sage.combinat.ribbon_shaped_tableau.RibbonShapedTableau":{width:[224,2,1,""],spin:[224,2,1,""],height:[224,2,1,""]},"sage.combinat.designs.orthogonal_arrays_find_recursive":{find_three_factor_product:[251,1,1,""],find_thwart_lemma_3_5:[251,1,1,""],find_construction_3_4:[251,1,1,""],find_recursive_construction:[251,1,1,""],int_as_sum:[251,1,1,""],find_thwart_lemma_4_1:[251,1,1,""],find_brouwer_van_rees_with_one_truncated_column:[251,1,1,""],find_brouwer_separable_design:[251,1,1,""],find_product_decomposition:[251,1,1,""],find_q_x:[251,1,1,""],find_construction_3_3:[251,1,1,""],find_wilson_decomposition_with_one_truncated_group:[251,1,1,""],find_construction_3_5:[251,1,1,""],find_wilson_decomposition_with_two_truncated_groups:[251,1,1,""],find_construction_3_6:[251,1,1,""]},"sage.combinat.sf.ns_macdonald":{NonattackingBacktracker:[12,3,1,""],E:[12,1,1,""],AugmentedLatticeDiagramFilling:[12,3,1,""],Ht:[12,1,1,""],LatticeDiagram:[12,3,1,""],NonattackingFillings_shape:[12,3,1,""],E_integral:[12,1,1,""],NonattackingFillings:[12,1,1,""]},"sage.combinat.alternating_sign_matrix.MonotoneTriangles":{lattice:[212,2,1,""],cardinality:[212,2,1,""],cover_relations:[212,2,1,""]},"sage.combinat.designs.block_design":{q3_minus_one_matrix:[88,1,1,""],normalize_hughes_plane_point:[88,1,1,""],projective_plane_to_OA:[88,1,1,""],tdesign_params:[88,1,1,""],HadamardDesign:[88,1,1,""],projective_plane:[88,1,1,""],DesarguesianProjectivePlaneDesign:[88,1,1,""],Hadamard3Design:[88,1,1,""],ProjectiveGeometryDesign:[88,1,1,""],HughesPlane:[88,1,1,""],are_hyperplanes_in_projective_geometry_parameters:[88,1,1,""],AffineGeometryDesign:[88,1,1,""],WittDesign:[88,1,1,""]},"sage.combinat.posets.lattices.FiniteJoinSemilattice":{join_matrix:[29,2,1,""],join:[29,2,1,""],Element:[29,4,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental.Element":{internal_coproduct:[272,2,1,""],kronecker_coproduct:[272,2,1,""],star_involution:[272,2,1,""]},"sage.combinat.crystals.affinization.AffinizationOfCrystal":{weight_lattice_realization:[9,2,1,""],digraph:[9,2,1,""],Element:[9,3,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine":{subset:[225,2,1,""],generating_series:[225,2,1,""],maximal_elements_combinatorial:[225,2,1,""],cardinality:[225,2,1,""],stanley_symm_poly_weight:[225,2,1,""]},"sage.combinat.crystals.tensor_product":{TensorProductOfCrystalsElement:[21,3,1,""],CrystalOfTableaux:[21,3,1,""],TensorProductOfRegularCrystalsWithGenerators:[21,3,1,""],CrystalOfTableauxElement:[21,3,1,""],TensorProductOfCrystalsWithGenerators:[21,3,1,""],ImmutableListWithParent:[21,3,1,""],TensorProductOfCrystals:[21,3,1,""],CrystalOfWords:[21,3,1,""],FullTensorProductOfRegularCrystals:[21,3,1,""],FullTensorProductOfCrystals:[21,3,1,""],TensorProductOfRegularCrystalsElement:[21,3,1,""],TestParent:[21,3,1,""],trunc:[21,1,1,""]},"sage.combinat.root_system.associahedron.Associahedron_class":{vertices_in_root_space:[24,2,1,""],cartan_type:[24,2,1,""]},"sage.combinat.designs.bibd":{BIBD_from_PBD:[266,1,1,""],steiner_triple_system:[266,1,1,""],BIBD_5q_5_for_q_prime_power:[266,1,1,""],BIBD_from_TD:[266,1,1,""],PBD_4_5_8_9_12:[266,1,1,""],BIBD_from_difference_family:[266,1,1,""],BalancedIncompleteBlockDesign:[266,3,1,""],v_4_1_BIBD:[266,1,1,""],PairwiseBalancedDesign:[266,3,1,""],PBD_from_TD:[266,1,1,""],v_5_1_BIBD:[266,1,1,""],balanced_incomplete_block_design:[266,1,1,""]},"sage.combinat.root_system.type_G":{CartanType:[234,3,1,""],AmbientSpace:[234,3,1,""]},"sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual":{transition_matrix:[280,2,1,""],Element:[280,3,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_A_element":{epsilon:[290,2,1,""],phi:[290,2,1,""],e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.root_system.type_G.AmbientSpace":{fundamental_weights:[234,2,1,""],positive_roots:[234,2,1,""],simple_root:[234,2,1,""],dimension:[234,2,1,""],negative_roots:[234,2,1,""]},"sage.combinat.sf.jack.JackPolynomials_qp":{coproduct_by_coercion:[309,2,1,""],Element:[309,3,1,""]},"sage.combinat.ncsym.ncsym":{SymmetricFunctionsNonCommutingVariables:[115,3,1,""],matchings:[115,1,1,""],nesting:[115,1,1,""]},"sage.combinat.tableau.SemistandardTableaux_size_weight":{cardinality:[7,2,1,""]},"sage.combinat.species.series":{uninitialized:[289,1,1,""],LazyPowerSeries:[289,3,1,""],LazyPowerSeriesRing:[289,3,1,""]},"sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation_generic_class":{to_character:[75,2,1,""],verify_representation:[75,2,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_even":{RCToKRTBijectionTypeA2Even:[255,3,1,""],KRTToRCBijectionTypeA2Even:[255,3,1,""]},"sage.combinat.tableau.Tableaux":{global_options:[7,1,1,""],Element:[7,4,1,""]},"sage.combinat.multichoose_nk.MultichooseNK":{cardinality:[96,2,1,""],random_element:[96,2,1,""]},"sage.combinat.skew_partition":{SkewPartitions_n:[211,3,1,""],SkewPartitions:[211,3,1,""],SkewPartitions_rowlengths:[211,3,1,""],SkewPartitions_all:[211,3,1,""],row_lengths_aux:[211,1,1,""],from_row_and_column_length:[211,1,1,""],SkewPartition:[211,3,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.deformed_coarse_powersum":{q:[115,2,1,""]},"sage.combinat.words.word_infinite_datatypes":{WordDatatype_iter:[36,3,1,""],WordDatatype_callable_with_caching:[36,3,1,""],WordDatatype_iter_with_caching:[36,3,1,""],WordDatatype_callable:[36,3,1,""]},"sage.combinat.graph_path.GraphPaths_common":{paths:[200,2,1,""],paths_from_source_to_target:[200,2,1,""],outgoing_edges:[200,2,1,""],incoming_edges:[200,2,1,""],incoming_paths:[200,2,1,""],outgoing_paths:[200,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_CnElement":{f0:[106,2,1,""],epsilon0:[106,2,1,""],e0:[106,2,1,""],phi0:[106,2,1,""]},"sage.combinat.sloane_functions.RecurrenceSequence":{list:[56,2,1,""]},"sage.combinat.crystals.fast_crystals.FastCrystal.Element":{e:[23,2,1,""],weight:[23,2,1,""],f:[23,2,1,""]},"sage.combinat.root_system.root_lattice_realization_algebras":{Algebras:[142,3,1,""]},"sage.combinat.posets.poset_examples":{posets:[189,4,1,""],Posets:[189,3,1,""]},"sage.combinat.tableau.SemistandardTableaux_all":{list:[7,2,1,""]},"sage.combinat.sf.k_dual.KBoundedQuotient":{AffineGrothendieckPolynomial:[77,2,1,""],dks:[77,2,1,""],affineSchur:[77,2,1,""],F:[77,2,1,""],km:[77,2,1,""],dual_k_Schur:[77,2,1,""],realizations:[77,2,1,""],kmonomial:[77,2,1,""],one:[77,2,1,""],kHLP:[77,2,1,""],lift:[77,2,1,""],a_realization:[77,2,1,""],ambient:[77,2,1,""],retract:[77,2,1,""],kHallLittlewoodP:[77,2,1,""],an_element:[77,2,1,""]},"sage.combinat.combinat.CombinatorialObject":{index:[171,2,1,""]},"sage.combinat.sf.kfpoly":{compat:[46,1,1,""],schur_to_hl:[46,1,1,""],weight:[46,1,1,""],dom:[46,1,1,""],riggings:[46,1,1,""],q_bin:[46,1,1,""],kfpoly:[46,1,1,""],KostkaFoulkesPolynomial:[46,1,1,""]},"sage.combinat.debruijn_sequence":{is_debruijn_sequence:[33,1,1,""],DeBruijnSequences:[33,3,1,""],debruijn_sequence:[33,1,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element":{nabla:[92,2,1,""]},"sage.combinat.core.Cores_length":{list:[99,2,1,""],from_partition:[99,2,1,""],Element:[99,4,1,""]},"sage.combinat.sf.jack.JackPolynomials_j":{Element:[309,3,1,""]},"sage.combinat.sloane_functions.ExtremesOfPermanentsSequence2":{gen:[56,2,1,""]},"sage.combinat.words.infinite_word":{InfiniteWord_class:[192,3,1,""]},"sage.combinat.designs.orthogonal_arrays":{is_transversal_design:[144,1,1,""],wilson_construction:[144,1,1,""],largest_available_k:[144,1,1,""],orthogonal_array:[144,1,1,""],OA_from_quasi_difference_matrix:[144,1,1,""],OA_from_Vmt:[144,1,1,""],QDM_from_Vmt:[144,1,1,""],TransversalDesign:[144,3,1,""],OA_find_disjoint_blocks:[144,1,1,""],OA_from_wider_OA:[144,1,1,""],OA_from_PBD:[144,1,1,""],OAMainFunctions:[144,3,1,""],transversal_design:[144,1,1,""],incomplete_orthogonal_array:[144,1,1,""],OA_relabel:[144,1,1,""],TD_product:[144,1,1,""],OA_n_times_2_pow_c_from_matrix:[144,1,1,""]},"sage.combinat.tableau.Tableaux_size":{an_element:[7,2,1,""]},"sage.combinat.root_system.type_F.CartanType":{coxeter_number:[235,2,1,""],dual_coxeter_number:[235,2,1,""],dynkin_diagram:[235,2,1,""],ascii_art:[235,2,1,""],dual:[235,2,1,""],AmbientSpace:[235,4,1,""]},"sage.combinat.rigged_configurations.bij_abstract_class":{KRTToRCBijectionAbstract:[113,3,1,""],RCToKRTBijectionAbstract:[113,3,1,""]},"sage.combinat.words.paths.FiniteWordPath_square_grid":{is_simple:[311,2,1,""],tikz_trajectory:[311,2,1,""],is_closed:[311,2,1,""],area:[311,2,1,""]},"sage.combinat.perfect_matching.PerfectMatching":{to_permutation:[308,2,1,""],to_graph:[308,2,1,""],crossings_iterator:[308,2,1,""],nestings:[308,2,1,""],number_of_loops:[308,2,1,""],nestings_iterator:[308,2,1,""],loop_type:[308,2,1,""],loops_iterator:[308,2,1,""],number_of_nestings:[308,2,1,""],number_of_crossings:[308,2,1,""],is_non_nesting:[308,2,1,""],conjugate_by_permutation:[308,2,1,""],loops:[308,2,1,""],partner:[308,2,1,""],is_non_crossing:[308,2,1,""],crossings:[308,2,1,""],Weingarten_function:[308,2,1,""],size:[308,2,1,""]},"sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class":{one:[313,2,1,""],product:[313,2,1,""],special_nodes:[313,2,1,""],group_generators:[313,2,1,""],index_set:[313,2,1,""],cartan_type:[313,2,1,""],dual_node:[313,2,1,""],action:[313,2,1,""],reduced_word:[313,2,1,""],Element:[313,4,1,""],an_element:[313,2,1,""]},"sage.combinat.restricted_growth":{RestrictedGrowthArrays:[118,3,1,""]},"sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element":{adams_operation:[258,2,1,""],frobenius:[258,2,1,""],verschiebung:[258,2,1,""],omega_involution:[258,2,1,""],scalar:[258,2,1,""],omega:[258,2,1,""],expand:[258,2,1,""]},"sage.combinat.affine_permutation.AffinePermutationTypeA":{to_core:[287,2,1,""],to_lehmer_code:[287,2,1,""],has_right_descent:[287,2,1,""],tableau_of_word:[287,2,1,""],apply_simple_reflection_left:[287,2,1,""],is_fully_commutative:[287,2,1,""],apply_simple_reflection_right:[287,2,1,""],value:[287,2,1,""],has_left_descent:[287,2,1,""],to_bounded_partition:[287,2,1,""],maximal_cyclic_decomposition:[287,2,1,""],to_dominant:[287,2,1,""],maximal_cyclic_factor:[287,2,1,""],position:[287,2,1,""],promotion:[287,2,1,""],flip_automorphism:[287,2,1,""],check:[287,2,1,""],to_type_a:[287,2,1,""]},"sage.combinat.graph_path":{GraphPaths_st:[200,3,1,""],GraphPaths_s:[200,3,1,""],GraphPaths_common:[200,3,1,""],GraphPaths_all:[200,3,1,""],GraphPaths:[200,1,1,""],GraphPaths_t:[200,3,1,""]},"sage.combinat.affine_permutation.AffinePermutationTypeC":{apply_simple_reflection_left:[287,2,1,""],apply_simple_reflection_right:[287,2,1,""],value:[287,2,1,""],has_left_descent:[287,2,1,""],has_right_descent:[287,2,1,""],position:[287,2,1,""],check:[287,2,1,""],to_type_a:[287,2,1,""]},"sage.combinat.affine_permutation.AffinePermutationTypeB":{has_right_descent:[287,2,1,""],apply_simple_reflection_right:[287,2,1,""],apply_simple_reflection_left:[287,2,1,""],check:[287,2,1,""],has_left_descent:[287,2,1,""]},"sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux":{module_generator:[296,2,1,""],Element:[296,3,1,""]},"sage.combinat.affine_permutation.AffinePermutationTypeG":{apply_simple_reflection_left:[287,2,1,""],apply_simple_reflection_right:[287,2,1,""],value:[287,2,1,""],has_left_descent:[287,2,1,""],has_right_descent:[287,2,1,""],position:[287,2,1,""],check:[287,2,1,""],to_type_a:[287,2,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpin":{Element:[281,4,1,""]},"sage.combinat.free_module.CombinatorialFreeModuleElement":{coefficient:[141,2,1,""],terms:[141,2,1,""],support:[141,2,1,""],monomial_coefficients:[141,2,1,""],length:[141,2,1,""],is_zero:[141,2,1,""],monomials:[141,2,1,""],to_vector:[141,2,1,""],coefficients:[141,2,1,""]},"sage.combinat.species.structure.SpeciesWrapper":{cardinality:[149,2,1,""]},"sage.combinat.sf.jack.SymmetricFunctionAlgebra_zonal.Element":{scalar_zonal:[309,2,1,""]},"sage.combinat.composition_signed.SignedCompositions":{cardinality:[126,2,1,""]},"sage.combinat.affine_permutation":{AffinePermutationGroupGeneric:[287,3,1,""],AffinePermutationTypeC:[287,3,1,""],AffinePermutationTypeB:[287,3,1,""],AffinePermutationTypeA:[287,3,1,""],AffinePermutationTypeG:[287,3,1,""],AffinePermutationTypeD:[287,3,1,""],AffinePermutationGroup:[287,1,1,""],AffinePermutation:[287,3,1,""],AffinePermutationGroupTypeG:[287,3,1,""],AffinePermutationGroupTypeD:[287,3,1,""],AffinePermutationGroupTypeC:[287,3,1,""],AffinePermutationGroupTypeB:[287,3,1,""],AffinePermutationGroupTypeA:[287,3,1,""]},"sage.combinat.root_system.weyl_group.WeylGroupElement":{domain:[205,2,1,""],to_permutation:[205,2,1,""],has_left_descent:[205,2,1,""],apply_simple_reflection:[205,2,1,""],to_permutation_string:[205,2,1,""],action:[205,2,1,""],has_descent:[205,2,1,""]},"sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationTypeFactory":{samples:[35,2,1,""]},"sage.combinat.species.set_species":{SetSpecies:[107,3,1,""],SetSpeciesStructure:[107,3,1,""],SetSpecies_class:[107,4,1,""]},"sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element":{scalar:[14,2,1,""],verschiebung:[14,2,1,""],omega:[14,2,1,""],expand:[14,2,1,""],omega_involution:[14,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFW":{from_fundamental:[241,2,1,""],from_affine_weyl:[241,2,1,""],simple_reflections:[241,2,1,""]},"sage.combinat.knutson_tao_puzzles.RhombusPiece":{north_piece:[52,2,1,""],edges:[52,2,1,""],south_piece:[52,2,1,""]},"sage.combinat.posets.poset_examples.Posets":{PentagonPoset:[189,6,1,""],IntegerCompositions:[189,6,1,""],AntichainPoset:[189,6,1,""],SymmetricGroupWeakOrderPoset:[189,6,1,""],SymmetricGroupBruhatOrderPoset:[189,6,1,""],IntegerPartitions:[189,6,1,""],ShardPoset:[189,6,1,""],SSTPoset:[189,6,1,""],DiamondPoset:[189,6,1,""],ChainPoset:[189,6,1,""],SymmetricGroupBruhatIntervalPoset:[189,6,1,""],RandomPoset:[189,6,1,""],BooleanLattice:[189,6,1,""],RestrictedIntegerPartitions:[189,6,1,""],TamariLattice:[189,6,1,""]},"sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Irreducible":{irreducible_components:[35,2,1,""],class_size:[35,2,1,""],dual:[35,2,1,""]},"sage.combinat.set_partition_ordered.OrderedSetPartitions_scomp":{cardinality:[242,2,1,""]},"sage.combinat.ncsf_qsym.qsym":{QuasiSymmetricFunctions:[272,3,1,""]},"sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual.Element":{scalar_hl:[280,2,1,""],omega_involution:[280,2,1,""],scalar:[280,2,1,""],dual:[280,2,1,""],omega:[280,2,1,""],expand:[280,2,1,""]},"sage.combinat.cartesian_product":{CartesianProduct_iters:[299,3,1,""],CartesianProduct:[299,1,1,""]},"sage.combinat.rigged_configurations.rigged_configurations":{KirillovReshetikhinCrystal:[310,1,1,""],RCTypeA2Even:[310,3,1,""],HighestWeightRiggedConfigurations:[310,1,1,""],RCNonSimplyLaced:[310,3,1,""],RCTypeA2Dual:[310,3,1,""],RiggedConfigurations:[310,3,1,""]},"sage.combinat.set_partition.SetPartitions_setparts":{cardinality:[229,2,1,""]},"sage.combinat.descent_algebra.DescentAlgebra":{I:[305,3,1,""],B:[305,3,1,""],a_realization:[305,2,1,""],D:[305,3,1,""]},"sage.combinat.matrices.dancing_links.dancing_linksWrapper":{dumps:[183,2,1,""],search:[183,2,1,""],add_rows:[183,2,1,""],get_solution:[183,2,1,""]},"sage.combinat.tableau.SemistandardTableaux_size_inf":{list:[7,2,1,""]},"sage.combinat.rooted_tree.LabelledRootedTrees_all":{unlabelled_trees:[48,2,1,""],labelled_trees:[48,2,1,""],Element:[48,4,1,""]},"sage.combinat.rigged_configurations.bij_type_B.RCToKRTBijectionTypeB":{run:[104,2,1,""],next_state:[104,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twisted":{classical_decomposition:[106,2,1,""],from_pm_diagram_to_highest_weight_vector:[106,2,1,""],from_highest_weight_vector_to_pm_diagram:[106,2,1,""],Element:[106,4,1,""]},"sage.combinat.composition.Compositions_n":{cardinality:[22,2,1,""],random_element:[22,2,1,""]},"sage.combinat.permutation.Permutations_setk":{random_element:[286,2,1,""]},"sage.combinat.designs.steiner_quadruple_systems":{three_n_minus_two:[129,1,1,""],barP:[129,1,1,""],three_n_minus_four:[129,1,1,""],relabel_system:[129,1,1,""],barP_system:[129,1,1,""],P:[129,1,1,""],two_n:[129,1,1,""],three_n_minus_eight:[129,1,1,""],twelve_n_minus_ten:[129,1,1,""],steiner_quadruple_system:[129,1,1,""],four_n_minus_six:[129,1,1,""]},"sage.combinat.sf.ns_macdonald.NonattackingFillings_shape":{flip:[12,2,1,""]},"sage.combinat.sf.new_kschur.kSchur":{product:[298,2,1,""]},"sage.combinat.partition_tuple.PartitionTuples_level_size":{cardinality:[293,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal":{is_perfect:[106,2,1,""],classical_decomposition:[106,2,1,""],R_matrix:[106,2,1,""],q_dimension:[106,2,1,""],level:[106,2,1,""],Element:[106,4,1,""],s:[106,2,1,""],r:[106,2,1,""],module_generator:[106,2,1,""],kirillov_reshetikhin_tableaux:[106,2,1,""],affinization:[106,2,1,""]},"sage.combinat.shuffle.SetShuffleProduct":{cardinality:[148,2,1,""]},"sage.combinat.six_vertex_model.SquareIceModel.Element":{to_alternating_sign_matrix:[223,2,1,""]},"sage.combinat.tiling.TilingSolver":{is_suitable:[40,2,1,""],space:[40,2,1,""],dlx_incremental_solutions:[40,2,1,""],pieces:[40,2,1,""],int_to_coord_dict:[40,2,1,""],dlx_solutions:[40,2,1,""],rows:[40,2,1,""],solve:[40,2,1,""],dlx_solver:[40,2,1,""],nrows_per_piece:[40,2,1,""],animate:[40,2,1,""],coord_to_int_dict:[40,2,1,""],dlx_common_prefix_solutions:[40,2,1,""],number_of_solutions:[40,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsPRkhalf_k":{cardinality:[169,2,1,""]},"sage.combinat.species.functorial_composition_species":{FunctorialCompositionSpecies:[294,3,1,""],FunctorialCompositionSpecies_class:[294,4,1,""],FunctorialCompositionStructure:[294,3,1,""]},"sage.combinat.permutation_cython":{right_action_same_n:[257,1,1,""],left_action_same_n:[257,1,1,""],right_action_product:[257,1,1,""],permutation_iterator_transposition_list:[257,1,1,""],left_action_product:[257,1,1,""]},"sage.combinat.dyck_word":{CompleteDyckWords_all:[256,3,1,""],is_a:[256,1,1,""],DyckWords_all:[256,3,1,""],DyckWords_size:[256,3,1,""],replace_parens:[256,1,1,""],DyckWordBacktracker:[256,3,1,""],from_ordered_tree:[256,1,1,""],replace_symbols:[256,1,1,""],DyckWords:[256,3,1,""],CompleteDyckWords:[256,3,1,""],is_area_sequence:[256,1,1,""],DyckWord_complete:[256,3,1,""],CompleteDyckWords_size:[256,3,1,""],DyckWord:[256,3,1,""],from_noncrossing_partition:[256,1,1,""],pealing:[256,1,1,""]},"sage.combinat.rigged_configurations.kleber_tree.VirtualKleberTree":{depth_first_iter:[207,2,1,""],breadth_first_iter:[207,2,1,""],base_tree:[207,2,1,""]},"sage.combinat.descent_algebra":{DescentAlgebraBases:[305,3,1,""],DescentAlgebra:[305,3,1,""]},"sage.combinat.tableau.StandardTableaux_shape":{cardinality:[7,2,1,""],list:[7,2,1,""],random_element:[7,2,1,""]},"sage.combinat.interval_posets.TamariIntervalPosets":{le:[185,2,1,""],global_options:[185,1,1,""],initial_forest:[185,6,1,""],from_binary_trees:[185,6,1,""],final_forest:[185,6,1,""],from_dyck_words:[185,6,1,""],check_poset:[185,6,1,""]},"sage.combinat.matrices":{all:[25,0,0,"-"],latin:[0,0,0,"-"],dlxcpp:[216,0,0,"-"],hadamard_matrix:[81,0,0,"-"],"__init__":[135,0,0,"-"],dancing_links:[183,0,0,"-"]},sage:{combinat:[64,0,0,"-"]},"sage.combinat.combinatorial_map":{combinatorial_map_trivial:[20,1,1,""],combinatorial_map:[20,1,1,""],combinatorial_map_wrapper:[20,1,1,""],combinatorial_maps_in_class:[20,1,1,""],CombinatorialMap:[20,3,1,""]},"sage.combinat.partition_algebra.SetPartitionsBkhalf_k":{cardinality:[169,2,1,""]},"sage.combinat.designs":{incidence_structures:[137,0,0,"-"],orthogonal_arrays_find_recursive:[251,0,0,"-"],ext_rep:[125,0,0,"-"],latin_squares:[261,0,0,"-"],steiner_quadruple_systems:[129,0,0,"-"],evenly_distributed_sets:[208,0,0,"-"],covering_design:[173,0,0,"-"],difference_matrices:[131,0,0,"-"],design_catalog:[17,0,0,"-"],all:[110,0,0,"-"],bibd:[266,0,0,"-"],resolvable_bibd:[80,0,0,"-"],group_divisible_designs:[278,0,0,"-"],block_design:[88,0,0,"-"],database:[268,0,0,"-"],orthogonal_arrays_build_recursive:[195,0,0,"-"],designs_pyx:[57,0,0,"-"],subhypergraph_search:[146,0,0,"-"],orthogonal_arrays:[144,0,0,"-"],"__init__":[215,0,0,"-"],difference_family:[247,0,0,"-"]},"sage.combinat.ncsym.bases.NCSymBases.ElementMethods":{to_symmetric_function:[297,2,1,""],internal_coproduct:[297,2,1,""],omega:[297,2,1,""],expand:[297,2,1,""]},"sage.combinat.designs.designs_pyx":{is_quasi_difference_matrix:[57,1,1,""],is_projective_plane:[57,1,1,""],is_pairwise_balanced_design:[57,1,1,""],is_group_divisible_design:[57,1,1,""],is_difference_matrix:[57,1,1,""],is_orthogonal_array:[57,1,1,""]},"sage.combinat.diagram_algebras.DiagramAlgebra.Element":{diagram:[186,2,1,""],diagrams:[186,2,1,""]},"sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations":{tensor:[310,2,1,""],Element:[310,4,1,""],global_options:[310,1,1,""],fermionic_formula:[310,2,1,""],kleber_tree:[310,2,1,""],module_generators:[310,2,1,""],tensor_product_of_kirillov_reshetikhin_crystals:[310,2,1,""],cardinality:[310,2,1,""],tensor_product_of_kirillov_reshetikhin_tableaux:[310,2,1,""]},"sage.combinat.interval_posets.TamariIntervalPosets_size":{element_class:[185,2,1,""],cardinality:[185,2,1,""]},"sage.combinat.schubert_polynomial.SchubertPolynomialRing_xbasis":{Element:[314,4,1,""]},"sage.combinat.combination.Combinations_msetk":{cardinality:[15,2,1,""]},"sage.combinat.species.structure":{SpeciesStructure:[149,3,1,""],SimpleStructuresWrapper:[149,3,1,""],SpeciesWrapper:[149,3,1,""],IsotypesWrapper:[149,3,1,""],GenericSpeciesStructure:[149,3,1,""],SimpleIsotypesWrapper:[149,3,1,""],StructuresWrapper:[149,3,1,""],SpeciesStructureWrapper:[149,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin":{classical_decomposition:[106,2,1,""],promotion_on_highest_weight_vectors:[106,2,1,""],promotion_on_highest_weight_vectors_inverse:[106,2,1,""],dynkin_diagram_automorphism:[106,2,1,""],promotion_inverse:[106,2,1,""],promotion:[106,2,1,""]},"sage.combinat.root_system.cartan_type.CartanType_finite":{is_affine:[291,2,1,""],is_finite:[291,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsTkhalf_k":{cardinality:[169,2,1,""]},"sage.combinat.root_system.coxeter_matrix":{coxeter_matrix_as_function:[152,1,1,""],coxeter_matrix:[152,1,1,""]},"sage.combinat.root_system.type_marked.CartanType_finite":{affine:[89,2,1,""],AmbientSpace:[89,4,1,""]},"sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations.Element":{weight:[76,2,1,""]},"sage.combinat.words":{abstract_word:[312,0,0,"-"],paths:[311,0,0,"-"],all:[219,0,0,"-"],word_options:[60,0,0,"-"],word:[231,0,0,"-"],words:[59,0,0,"-"],word_datatypes:[150,0,0,"-"],alphabet:[176,0,0,"-"],word_infinite_datatypes:[36,0,0,"-"],suffix_trees:[90,0,0,"-"],finite_word:[42,0,0,"-"],"__init__":[136,0,0,"-"],word_generators:[307,0,0,"-"],shuffle_product:[34,0,0,"-"],infinite_word:[192,0,0,"-"],word_char:[271,0,0,"-"],morphism:[5,0,0,"-"]},"sage.combinat.words.paths.FiniteWordPath_3d":{plot:[311,2,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_s.Element":{creation:[92,2,1,""]},"sage.combinat.skew_tableau.StandardSkewTableaux_size":{cardinality:[122,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2Element":{f0:[106,2,1,""],epsilon0:[106,2,1,""],e0:[106,2,1,""],phi0:[106,2,1,""]},"sage.combinat.skew_partition.SkewPartitions_n":{cardinality:[211,2,1,""]},"sage.combinat.crystals.alcove_path.RootsWithHeight":{lambda_chain:[132,2,1,""],word:[132,2,1,""],Element:[132,4,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement":{phi:[281,2,1,""],e:[281,2,1,""],f:[281,2,1,""],epsilon:[281,2,1,""],left_split:[281,2,1,""],to_array:[281,2,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_q":{Element:[92,3,1,""]},"sage.combinat.designs.incidence_structures.IncidenceStructure":{num_points:[137,2,1,""],num_blocks:[137,2,1,""],dual_design:[137,2,1,""],block_sizes:[137,2,1,""],is_simple:[137,2,1,""],dual:[137,2,1,""],trace:[137,2,1,""],induced_substructure:[137,2,1,""],is_t_design:[137,2,1,""],parameters:[137,2,1,""],edge_coloring:[137,2,1,""],is_isomorphic:[137,2,1,""],degrees:[137,2,1,""],is_resolvable:[137,2,1,""],blocks:[137,2,1,""],degree:[137,2,1,""],automorphism_group:[137,2,1,""],incidence_graph:[137,2,1,""],packing:[137,2,1,""],is_block_design:[137,2,1,""],canonical_label:[137,2,1,""],copy:[137,2,1,""],dual_incidence_structure:[137,2,1,""],ground_set:[137,2,1,""],block_design_checker:[137,2,1,""],incidence_matrix:[137,2,1,""],relabel:[137,2,1,""],points:[137,2,1,""],is_connected:[137,2,1,""],isomorphic_substructures_iterator:[137,2,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_s":{Element:[92,3,1,""]},"sage.combinat.binary_tree.BinaryTrees_size":{element_class:[285,2,1,""],cardinality:[285,2,1,""],random_element:[285,2,1,""]},"sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element":{phi:[11,2,1,""],endpoint:[11,2,1,""],e:[11,2,1,""],weight:[11,2,1,""],f:[11,2,1,""],epsilon:[11,2,1,""],split_step:[11,2,1,""],compress:[11,2,1,""],s:[11,2,1,""],dualize:[11,2,1,""],reflect_step:[11,2,1,""]},"sage.combinat.tableau_tuple.TableauTuples_size":{an_element:[301,2,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_j":{Element:[92,3,1,""]},"sage.combinat.species.composition_species.CompositionSpeciesStructure":{change_labels:[91,2,1,""],transport:[91,2,1,""]},"sage.combinat.sf.sfa.SymmetricFunctionsBases":{super_categories:[68,2,1,""],ElementMethods:[68,3,1,""],ParentMethods:[68,3,1,""]},"sage.combinat.words.paths.FiniteWordPath_triangle_grid":{xmin:[311,2,1,""],ymin:[311,2,1,""],ymax:[311,2,1,""],xmax:[311,2,1,""]},"sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal":{Element:[112,3,1,""]},"sage.combinat.kazhdan_lusztig":{KazhdanLusztigPolynomial:[199,3,1,""]},"sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine":{basic_untwisted:[291,2,1,""],is_untwisted_affine:[291,2,1,""],classical:[291,2,1,""]},"sage.combinat.species.generating_series.ExponentialGeneratingSeries":{count:[78,2,1,""],counts:[78,2,1,""],functorial_composition:[78,2,1,""]},"sage.combinat.tableau.Tableau":{row_stabilizer:[7,2,1,""],is_rectangular:[7,2,1,""],bump:[7,2,1,""],entries:[7,2,1,""],catabolism_projector:[7,2,1,""],is_column_increasing:[7,2,1,""],cocharge:[7,2,1,""],promotion_inverse:[7,2,1,""],seg:[7,2,1,""],attacking_pairs:[7,2,1,""],shape:[7,2,1,""],vertical_flip:[7,2,1,""],is_row_increasing:[7,2,1,""],flush:[7,2,1,""],slide_multiply:[7,2,1,""],descents:[7,2,1,""],is_standard:[7,2,1,""],size:[7,2,1,""],pp:[7,2,1,""],inversion_number:[7,2,1,""],to_word_by_row:[7,2,1,""],check:[7,2,1,""],conjugate:[7,2,1,""],right_key_tableau:[7,2,1,""],rotate_180:[7,2,1,""],last_letter_lequal:[7,2,1,""],socle:[7,2,1,""],to_Gelfand_Tsetlin_pattern:[7,2,1,""],to_chain:[7,2,1,""],charge:[7,2,1,""],to_word:[7,2,1,""],is_row_strict:[7,2,1,""],reduced_lambda_catabolism:[7,2,1,""],is_k_tableau:[7,2,1,""],cells_containing:[7,2,1,""],is_column_strict:[7,2,1,""],evaluation:[7,2,1,""],bump_multiply:[7,2,1,""],is_semistandard:[7,2,1,""],column_stabilizer:[7,2,1,""],promotion_operator:[7,2,1,""],reverse_bump:[7,2,1,""],evacuation:[7,2,1,""],major_index:[7,2,1,""],weight:[7,2,1,""],is_increasing:[7,2,1,""],inversions:[7,2,1,""],anti_restrict:[7,2,1,""],catabolism:[7,2,1,""],bender_knuth_involution:[7,2,1,""],atom:[7,2,1,""],catabolism_sequence:[7,2,1,""],reading_word_permutation:[7,2,1,""],height:[7,2,1,""],lambda_catabolism:[7,2,1,""],to_word_by_column:[7,2,1,""],k_weight:[7,2,1,""],insert_word:[7,2,1,""],restrict:[7,2,1,""],symmetric_group_action_on_entries:[7,2,1,""],standardization:[7,2,1,""],leq:[7,2,1,""],corners:[7,2,1,""],cells:[7,2,1,""],level:[7,2,1,""],to_list:[7,2,1,""],schensted_insert:[7,2,1,""],add_entry:[7,2,1,""],is_key_tableau:[7,2,1,""],restriction_shape:[7,2,1,""],components:[7,2,1,""],raise_action_from_words:[7,2,1,""],left_key_tableau:[7,2,1,""],entry:[7,2,1,""],promotion:[7,2,1,""],symmetric_group_action_on_values:[7,2,1,""],schuetzenberger_involution:[7,2,1,""]},"sage.combinat.root_system.root_space.RootSpaceElement":{is_positive_root:[155,2,1,""],scalar:[155,2,1,""],to_ambient:[155,2,1,""],associated_coroot:[155,2,1,""],max_coroot_le:[155,2,1,""],quantum_root:[155,2,1,""],max_quantum_element:[155,2,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ElementMethods":{itensor:[201,2,1,""],internal_product:[201,2,1,""],kronecker_product:[201,2,1,""]},"sage.combinat.root_system.coxeter_group.CoxeterGroupAsPermutationGroup.Element":{has_descent:[170,2,1,""],has_left_descent:[170,2,1,""]},"sage.combinat.crystals.tensor_product.CrystalOfTableaux":{cartan_type:[21,2,1,""],module_generator:[21,2,1,""],Element:[21,4,1,""]},"sage.combinat.crystals.kyoto_path_model.KyotoPathModel.Element":{phi:[203,2,1,""],e:[203,2,1,""],weight:[203,2,1,""],truncate:[203,2,1,""],f:[203,2,1,""],epsilon:[203,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon.Element":{verschiebung:[140,2,1,""],star_involution:[140,2,1,""]},"sage.combinat.species.product_species.ProductSpeciesStructure":{canonical_label:[71,2,1,""],change_labels:[71,2,1,""],automorphism_group:[71,2,1,""],transport:[71,2,1,""]},"sage.combinat.words.alphabet":{build_alphabet:[176,1,1,""],Alphabet:[176,1,1,""],OrderedAlphabet_Finite:[176,4,1,""],OrderedAlphabet:[176,3,1,""],OrderedAlphabet_backward_compatibility:[176,3,1,""]},"sage.combinat.composition":{Compositions_constraints:[22,3,1,""],Compositions:[22,3,1,""],Compositions_n:[22,3,1,""],Composition:[22,3,1,""],Compositions_all:[22,3,1,""]},"sage.combinat.integer_list.IntegerListsLex.Element":{check:[269,2,1,""]},"sage.combinat.all":{SetPartitionsSk:[19,1,1,""],SetPartitionsRk:[19,1,1,""],SetPartitionsTk:[19,1,1,""],SetPartitionsIk:[19,1,1,""],SetPartitionsPRk:[19,1,1,""],SetPartitionsPk:[19,1,1,""],SetPartitionsBk:[19,1,1,""],SetPartitionsAk:[19,1,1,""]},"sage.combinat.skew_partition.SkewPartitions":{from_row_and_column_length:[211,2,1,""],global_options:[211,1,1,""],Element:[211,4,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Immaculate":{dual:[140,2,1,""],Element:[140,3,1,""]},"sage.combinat.dyck_word.DyckWords_size":{cardinality:[256,2,1,""]},"sage.combinat.root_system.type_BC_affine.CartanType":{dynkin_diagram:[32,2,1,""],ascii_art:[32,2,1,""],classical:[32,2,1,""],basic_untwisted:[32,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsIk_k":{cardinality:[169,2,1,""]},"sage.combinat.permutation":{from_reduced_word:[286,1,1,""],StandardPermutations_avoiding_312:[286,3,1,""],from_major_code:[286,1,1,""],StandardPermutations_bruhat_greater:[286,3,1,""],StandardPermutations_avoiding_213:[286,3,1,""],StandardPermutations_avoiding_generic:[286,3,1,""],PatternAvoider:[286,3,1,""],StandardPermutations_bruhat_smaller:[286,3,1,""],StandardPermutations_avoiding_123:[286,3,1,""],Arrangements_setk:[286,3,1,""],StandardPermutations_avoiding_231:[286,3,1,""],descents_composition_first:[286,1,1,""],descents_composition_list:[286,1,1,""],Arrangements_msetk:[286,3,1,""],StandardPermutations_recoilsfiner:[286,3,1,""],StandardPermutations_avoiding_12:[286,3,1,""],Permutations_setk:[286,3,1,""],CyclicPermutations_mset:[286,1,1,""],from_lehmer_code:[286,1,1,""],PermutationsNK:[286,3,1,""],StandardPermutations_recoils:[286,3,1,""],from_rank:[286,1,1,""],StandardPermutations_n:[286,3,1,""],permutohedron_lequal:[286,1,1,""],StandardPermutations_avoiding_321:[286,3,1,""],StandardPermutations_descents:[286,3,1,""],StandardPermutations_avoiding_132:[286,3,1,""],bruhat_lequal:[286,1,1,""],Permutations_nk:[286,3,1,""],Permutation:[286,3,1,""],to_standard:[286,1,1,""],from_permutation_group_element:[286,1,1,""],from_cycles:[286,1,1,""],Permutations_set:[286,3,1,""],descents_composition_last:[286,1,1,""],CyclicPermutationsOfPartition_partition:[286,1,1,""],StandardPermutations_recoilsfatter:[286,3,1,""],Permutations:[286,3,1,""],StandardPermutations_n_abstract:[286,3,1,""],CyclicPermutations:[286,3,1,""],from_inversion_vector:[286,1,1,""],Arrangements:[286,3,1,""],StandardPermutations_all:[286,3,1,""],Permutations_msetk:[286,3,1,""],bistochastic_as_sum_of_permutations:[286,1,1,""],Permutations_mset:[286,3,1,""],CyclicPermutationsOfPartition:[286,3,1,""],StandardPermutations_avoiding_21:[286,3,1,""]},"sage.combinat.crystals.tensor_product.CrystalOfWords":{one_dimensional_configuration_sum:[21,2,1,""],Element:[21,4,1,""]},"sage.combinat.ncsf_qsym":{all:[274,0,0,"-"],combinatorics:[162,0,0,"-"],generic_basis_code:[201,0,0,"-"],qsym:[272,0,0,"-"],tutorial:[165,0,0,"-"],ncsf:[140,0,0,"-"],"__init__":[38,0,0,"-"]},"sage.combinat.ncsym.bases.NCSymOrNCSymDualBases.ElementMethods":{duality_pairing:[297,2,1,""]},"sage.combinat.root_system.type_relabel.CartanType_affine":{basic_untwisted:[167,2,1,""],special_node:[167,2,1,""],is_untwisted_affine:[167,2,1,""],classical:[167,2,1,""]},"sage.combinat.cluster_algebra_quiver.cluster_seed":{is_LeeLiZel_allowable:[319,1,1,""],PathSubset:[319,1,1,""],SetToPath:[319,1,1,""],coeff_recurs:[319,1,1,""],ClusterSeed:[319,3,1,""],ClusterVariable:[319,3,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon":{product_on_basis:[140,2,1,""],to_symmetric_function_on_basis:[140,2,1,""],antipode_on_basis:[140,2,1,""],dual:[140,2,1,""],Element:[140,3,1,""]},"sage.combinat.sloane_functions.RecurrenceSequence2":{list:[56,2,1,""]},"sage.combinat.sf.k_dual.kbounded_HallLittlewoodP":{retract:[77,2,1,""],lift:[77,2,1,""]},"sage.combinat.root_system.cartan_type.CartanType_decorator":{is_irreducible:[291,2,1,""],is_finite:[291,2,1,""],index_set:[291,2,1,""],rank:[291,2,1,""],is_crystallographic:[291,2,1,""],is_affine:[291,2,1,""]},"sage.combinat.ribbon_tableau.MultiSkewTableaux":{Element:[117,4,1,""]},"sage.combinat.crystals.elementary_crystals.TCrystal.Element":{epsilon:[254,2,1,""],phi:[254,2,1,""],weight:[254,2,1,""]},"sage.combinat.sloane_functions.A001358":{list:[56,2,1,""]},"sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary.Element":{verschiebung:[249,2,1,""],omega:[249,2,1,""],expand:[249,2,1,""],omega_involution:[249,2,1,""]},"sage.combinat.integer_list.IntegerListsLexIter":{next:[269,2,1,""]},"sage.combinat.rigged_configurations.bij_type_B.KRTToRCBijectionTypeB":{other_outcome:[104,2,1,""],run:[104,2,1,""],next_state:[104,2,1,""]},"sage.combinat.sf.powersum":{SymmetricFunctionAlgebra_power:[258,3,1,""]},"sage.combinat.symmetric_group_representations.YoungRepresentations_Seminormal":{object_class:[75,4,1,""]},"sage.combinat.sf.jack.JackPolynomials_p.Element":{scalar_jack:[309,2,1,""]},"sage.combinat.rigged_configurations.rigged_configuration_element":{KRRCNonSimplyLacedElement:[220,3,1,""],KRRCSimplyLacedElement:[220,3,1,""],KRRiggedConfigurationElement:[220,3,1,""],RiggedConfigurationElement:[220,3,1,""],KRRCTypeA2DualElement:[220,3,1,""],RCHWNonSimplyLacedElement:[220,3,1,""],RCNonSimplyLacedElement:[220,3,1,""],RCHighestWeightElement:[220,3,1,""]},"sage.combinat.root_system.plot":{barycentric_projection_matrix:[276,1,1,""],PlotOptions:[276,3,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.dualQuasisymmetric_Schur":{to_symmetric_function_on_basis:[140,2,1,""],dual:[140,2,1,""]},"sage.combinat.crystals.fast_crystals":{FastCrystal:[23,3,1,""]},"sage.combinat.tableau.StandardTableau":{up_list:[7,2,1,""],dominates:[7,2,1,""],standard_number_of_descents:[7,2,1,""],up:[7,2,1,""],promotion_inverse:[7,2,1,""],down:[7,2,1,""],is_standard:[7,2,1,""],down_list:[7,2,1,""],promotion:[7,2,1,""],content:[7,2,1,""],standard_major_index:[7,2,1,""],standard_descents:[7,2,1,""]},"sage.combinat.rigged_configurations.bij_type_C.KRTToRCBijectionTypeC":{next_state:[103,2,1,""]},"sage.combinat.posets.elements":{LatticePosetElement:[39,3,1,""],PosetElement:[39,3,1,""],JoinSemilatticeElement:[39,3,1,""],MeetSemilatticeElement:[39,3,1,""]},"sage.combinat.baxter_permutations.BaxterPermutations_all":{to_pair_of_twin_binary_trees:[18,2,1,""]},"sage.combinat.sf.hall_littlewood.HallLittlewood_generic":{hall_littlewood_family:[83,2,1,""],transition_matrix:[83,2,1,""],Element:[83,3,1,""]},"sage.combinat.sf.jack.SymmetricFunctionAlgebra_zonal":{Element:[309,3,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.homogeneous":{Element:[115,3,1,""]},"sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD":{halving_map:[109,2,1,""],run:[109,2,1,""],doubling_map:[109,2,1,""],next_state:[109,2,1,""]},"sage.combinat.baxter_permutations.BaxterPermutations_size":{cardinality:[18,2,1,""]},"sage.combinat.combination.Combinations_set":{unrank:[15,2,1,""],rank:[15,2,1,""]},"sage.combinat.rigged_configurations.bij_infinity.MLTToRCBijectionTypeB":{run:[10,2,1,""]},"sage.combinat.composition.Compositions":{from_subset:[22,2,1,""],from_descents:[22,2,1,""],from_code:[22,2,1,""],Element:[22,4,1,""]},"sage.combinat.partition_algebra.SetPartitionsBk_k":{cardinality:[169,2,1,""]},"sage.combinat.words.abstract_word.Word_class":{partial_sums:[312,2,1,""],longest_common_prefix:[312,2,1,""],string_rep:[312,2,1,""],parent:[312,2,1,""],palindrome_prefixes_iterator:[312,2,1,""],apply_morphism:[312,2,1,""],is_finite:[312,2,1,""],iterated_right_palindromic_closure:[312,2,1,""],is_empty:[312,2,1,""],longest_periodic_prefix:[312,2,1,""],sum_digits:[312,2,1,""],length:[312,2,1,""],lex_greater:[312,2,1,""],return_words_iterator:[312,2,1,""],prefixes_iterator:[312,2,1,""],complete_return_words_iterator:[312,2,1,""],delta:[312,2,1,""],lex_less:[312,2,1,""],to_integer_word:[312,2,1,""],finite_differences:[312,2,1,""],factor_occurrences_iterator:[312,2,1,""]},"sage.combinat.words.word_datatypes.WordDatatype_tuple":{length:[150,2,1,""]},"sage.combinat.crystals.affinization":{AffinizationOfCrystal:[9,3,1,""]},"sage.combinat.sf.llt":{LLT_class:[4,3,1,""],LLT_generic:[4,3,1,""],LLT_cospin:[4,3,1,""],LLT_spin:[4,3,1,""]},"sage.combinat.integer_list.Envelope":{limit_start:[269,2,1,""],limit:[269,2,1,""],adapt:[269,2,1,""],"__init__":[269,2,1,""]},"sage.combinat.tableau.StandardTableaux_size":{cardinality:[7,2,1,""],random_element:[7,2,1,""]},"sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations":{weight_lattice_realization:[76,2,1,""],global_options:[76,1,1,""],Element:[76,3,1,""]},"sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies":{weight_ring:[294,2,1,""]},"sage.combinat.species.composition_species":{CompositionSpecies:[91,3,1,""],CompositionSpeciesStructure:[91,3,1,""],CompositionSpecies_class:[91,4,1,""]},"sage.combinat.root_system.type_reducible.AmbientSpace":{ambient_spaces:[302,2,1,""],component_types:[302,2,1,""],negative_roots:[302,2,1,""],inject_weights:[302,2,1,""],positive_roots:[302,2,1,""],simple_coroot:[302,2,1,""],dimension:[302,2,1,""],fundamental_weights:[302,2,1,""],simple_root:[302,2,1,""],cartan_type:[302,2,1,""]},"sage.combinat.sf.hall_littlewood.HallLittlewood_p":{Element:[83,3,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial.Element":{psi_involution:[272,2,1,""],to_symmetric_function:[272,2,1,""],is_symmetric:[272,2,1,""],expand:[272,2,1,""]},"sage.combinat.tableau.StandardTableaux":{Element:[7,4,1,""]},"sage.combinat.posets.hasse_diagram.HasseDiagram":{is_join_semilattice:[304,2,1,""],coxeter_transformation:[304,2,1,""],is_distributive_lattice:[304,2,1,""],order_filter:[304,2,1,""],order_ideal:[304,2,1,""],rank:[304,2,1,""],closed_interval:[304,2,1,""],rank_function:[304,2,1,""],is_linear_extension:[304,2,1,""],dual:[304,2,1,""],minimal_elements:[304,2,1,""],is_chain:[304,2,1,""],principal_order_ideal:[304,2,1,""],bottom:[304,2,1,""],upper_covers_iterator:[304,2,1,""],top:[304,2,1,""],is_greater_than:[304,2,1,""],is_less_than:[304,2,1,""],complements:[304,2,1,""],is_bounded:[304,2,1,""],is_ranked:[304,2,1,""],chains:[304,2,1,""],linear_extension:[304,2,1,""],is_lequal:[304,2,1,""],lequal_matrix:[304,2,1,""],linear_extensions:[304,2,1,""],lower_covers_iterator:[304,2,1,""],covers:[304,2,1,""],cover_relations:[304,2,1,""],cardinality:[304,2,1,""],mobius_function_matrix:[304,2,1,""],is_meet_semilattice:[304,2,1,""],antichains_iterator:[304,2,1,""],has_top:[304,2,1,""],has_bottom:[304,2,1,""],maximal_elements:[304,2,1,""],join_matrix:[304,2,1,""],is_graded:[304,2,1,""],interval:[304,2,1,""],are_incomparable:[304,2,1,""],principal_order_filter:[304,2,1,""],are_comparable:[304,2,1,""],meet_matrix:[304,2,1,""],is_complemented_lattice:[304,2,1,""],open_interval:[304,2,1,""],is_gequal:[304,2,1,""],cover_relations_iterator:[304,2,1,""],antichains:[304,2,1,""],mobius_function:[304,2,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_generic":{cardinality:[286,2,1,""]},"sage.combinat.sf.hall_littlewood.HallLittlewood_q":{Element:[83,3,1,""]},"sage.combinat.dyck_word.CompleteDyckWords_size":{cardinality:[256,2,1,""],random_element:[256,2,1,""]},"sage.combinat.root_system.associahedron.Associahedra":{Element:[24,4,1,""]},"sage.combinat.sf.k_dual.kMonomial":{retract:[77,2,1,""],lift:[77,2,1,""]},"sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class":{index_set:[119,2,1,""],add_edge:[119,2,1,""],symmetrizer:[119,2,1,""],dynkin_diagram:[119,2,1,""],column:[119,2,1,""],is_irreducible:[119,2,1,""],an_instance:[119,6,1,""],is_finite:[119,2,1,""],relabel:[119,2,1,""],rank:[119,2,1,""],cartan_matrix:[119,2,1,""],dual:[119,2,1,""],is_crystallographic:[119,2,1,""],is_crystalographic:[119,2,1,""],is_affine:[119,2,1,""],cartan_type:[119,2,1,""],row:[119,2,1,""]},"sage.combinat.species.set_species.SetSpeciesStructure":{canonical_label:[107,2,1,""],automorphism_group:[107,2,1,""],transport:[107,2,1,""]},"sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary":{coproduct_on_generators:[249,2,1,""],Element:[249,3,1,""]},"sage.combinat.rigged_configurations":{all:[124,0,0,"-"],bij_type_A:[105,0,0,"-"],bij_type_C:[103,0,0,"-"],bij_type_B:[104,0,0,"-"],bij_type_D:[109,0,0,"-"],bij_type_A2_dual:[181,0,0,"-"],"__init__":[86,0,0,"-"],kr_tableaux:[281,0,0,"-"],bijection:[292,0,0,"-"],bij_infinity:[10,0,0,"-"],rigged_configurations:[310,0,0,"-"],rigged_configuration_element:[220,0,0,"-"],rc_infinity:[76,0,0,"-"],rigged_partition:[168,0,0,"-"],tensor_product_kr_tableaux_element:[55,0,0,"-"],bij_type_A2_even:[255,0,0,"-"],bij_type_A2_odd:[85,0,0,"-"],bij_type_D_twisted:[197,0,0,"-"],kleber_tree:[207,0,0,"-"],tensor_product_kr_tableaux:[153,0,0,"-"],bij_abstract_class:[113,0,0,"-"],rc_crystal:[264,0,0,"-"]},"sage.combinat.sloane_functions.A002808":{list:[56,2,1,""]},"sage.combinat.species.recursive_species.CombinatorialSpecies":{weight_ring:[161,2,1,""],define:[161,2,1,""]},"sage.combinat.crystals.tensor_product.CrystalOfTableauxElement":{promotion:[21,2,1,""],to_tableau:[21,2,1,""],pp:[21,2,1,""],promotion_inverse:[21,2,1,""]},"sage.combinat.affine_permutation.AffinePermutationGroupTypeD":{Element:[287,4,1,""]},"sage.combinat.affine_permutation.AffinePermutationGroupTypeG":{Element:[287,4,1,""],one:[287,2,1,""]},"sage.combinat.crystals.elementary_crystals.RCrystal":{weight_lattice_realization:[254,2,1,""],cardinality:[254,2,1,""],Element:[254,3,1,""]},"sage.combinat.affine_permutation.AffinePermutationGroupTypeA":{from_lehmer_code:[287,2,1,""],one:[287,2,1,""],Element:[287,4,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Complete.Element":{psi_involution:[140,2,1,""]},"sage.combinat.six_vertex_model.SquareIceModel":{from_alternating_sign_matrix:[223,2,1,""],Element:[223,3,1,""]},"sage.combinat.affine_permutation.AffinePermutationGroupTypeB":{Element:[287,4,1,""]},"sage.combinat.k_tableau.StrongTableaux":{standard_unmarked_iterator:[180,5,1,""],marked_CST_to_transposition_sequence:[180,5,1,""],follows_tableau_unsigned_standard:[180,5,1,""],an_element:[180,2,1,""],global_options:[180,1,1,""],transpositions_to_standard_strong:[180,5,1,""],Element:[180,4,1,""],inner_shape:[180,2,1,""],shape:[180,2,1,""],marked_given_unmarked_and_weight_iterator:[180,5,1,""],outer_shape:[180,2,1,""],add_marking:[180,5,1,""],standard_marked_iterator:[180,5,1,""],cells_head_dictionary:[180,5,1,""]},"sage.combinat.rigged_configurations.kleber_tree.KleberTree":{plot:[207,2,1,""],latex_options:[207,2,1,""],digraph:[207,2,1,""],Element:[207,4,1,""],breadth_first_iter:[207,2,1,""],depth_first_iter:[207,2,1,""],cartan_type:[207,2,1,""]},"sage.combinat.rigged_configurations.bij_type_D_twisted.KRTToRCBijectionTypeDTwisted":{run:[197,2,1,""],next_state:[197,2,1,""]},"sage.combinat.abstract_tree.AbstractLabelledTree":{as_digraph:[84,2,1,""],shape:[84,2,1,""],labels:[84,2,1,""],leaf_labels:[84,2,1,""],label:[84,2,1,""]},"sage.combinat.lyndon_word.StandardBracketedLyndonWords_nk":{cardinality:[98,2,1,""]},"sage.combinat.sf.hall_littlewood.HallLittlewood_qp":{Element:[83,3,1,""]},"sage.combinat.gelfand_tsetlin_patterns":{GelfandTsetlinPatternsTopRow:[58,3,1,""],GelfandTsetlinPatterns:[58,3,1,""],GelfandTsetlinPattern:[58,3,1,""]},"sage.combinat.species.recursive_species":{CombinatorialSpecies:[161,3,1,""],CombinatorialSpeciesStructure:[161,3,1,""]},"sage.combinat.root_system.root_system":{RootSystem:[6,3,1,""],WeylDim:[6,1,1,""]},"sage.combinat.sloane_functions.SloaneSequence":{list:[56,2,1,""]},"sage.combinat.designs.resolvable_bibd":{v_4_1_rbibd:[80,1,1,""],kirkman_triple_system:[80,1,1,""],PBD_4_7_from_Y:[80,1,1,""],PBD_4_7:[80,1,1,""],resolvable_balanced_incomplete_block_design:[80,1,1,""]},"sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All":{subset:[317,2,1,""],permutation_group:[317,2,1,""],orbit:[317,2,1,""],Element:[317,3,1,""],lift:[317,2,1,""],ambient:[317,2,1,""],retract:[317,2,1,""],is_canonical:[317,2,1,""],children:[317,2,1,""],roots:[317,2,1,""]},"sage.combinat.k_tableau.WeakTableau_abstract":{pp:[180,2,1,""],weight:[180,2,1,""],shape:[180,2,1,""],intermediate_shapes:[180,2,1,""],representation:[180,2,1,""],size:[180,2,1,""]},"sage.combinat.root_system.associahedron":{Associahedra:[24,3,1,""],Associahedron:[24,1,1,""],Associahedron_class:[24,3,1,""]},"sage.combinat.ordered_tree.OrderedTrees_size":{element_class:[30,2,1,""],cardinality:[30,2,1,""],random_element:[30,2,1,""]},"sage.combinat.rigged_configurations.rc_crystal.CrystalOfNonSimplyLacedRC":{from_virtual:[264,2,1,""],to_virtual:[264,2,1,""],virtual:[264,2,1,""],Element:[264,4,1,""]},"sage.combinat.k_tableau.WeakTableau_core":{list_of_standard_cells:[180,2,1,""],k_charge:[180,2,1,""],to_factorized_permutation_tableau:[180,2,1,""],dictionary_of_coordinates_at_residues:[180,2,1,""],to_bounded_tableau:[180,2,1,""],shape_bounded:[180,2,1,""],shape_core:[180,2,1,""],residues_of_entries:[180,2,1,""],k_charge_I:[180,2,1,""],check:[180,2,1,""],k_charge_J:[180,2,1,""]},"sage.combinat.crystals.tensor_product.TensorProductOfCrystalsElement":{phi:[21,2,1,""],e:[21,2,1,""],weight:[21,2,1,""],f:[21,2,1,""],epsilon:[21,2,1,""],pp:[21,2,1,""]},"sage.combinat.species.cycle_species.CycleSpeciesStructure":{permutation_group_element:[159,2,1,""],canonical_label:[159,2,1,""],automorphism_group:[159,2,1,""],transport:[159,2,1,""]},"sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths.Element":{energy_function:[11,2,1,""],weyl_group_representation:[11,2,1,""],scalar_factors:[11,2,1,""]},"sage.combinat.finite_state_machine.FSMState":{final_word_out:[184,4,1,""],relabeled:[184,2,1,""],fully_equal:[184,2,1,""],copy:[184,2,1,""],label:[184,2,1,""],is_final:[184,4,1,""],deepcopy:[184,2,1,""],is_initial:[184,4,1,""]},"sage.combinat.subsets_pairwise":{PairwiseCompatibleSubsets:[111,3,1,""]},"sage.combinat.root_system.type_dual.AmbientSpace":{fundamental_weights:[13,2,1,""],simple_root:[13,2,1,""],dimension:[13,2,1,""]},"sage.combinat.perfect_matching.PerfectMatchings":{Weingarten_matrix:[308,2,1,""],an_element:[308,2,1,""],cardinality:[308,2,1,""],random_element:[308,2,1,""],Element:[308,4,1,""]},"sage.combinat.species.partition_species":{PartitionSpeciesStructure:[318,3,1,""],PartitionSpecies:[318,3,1,""],PartitionSpecies_class:[318,4,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ParentMethods":{itensor:[201,2,1,""],internal_product:[201,2,1,""],kronecker_product:[201,2,1,""],internal_product_on_basis:[201,2,1,""]},"sage.combinat.crystals.highest_weight_crystals":{FiniteDimensionalHighestWeightCrystal_TypeE:[275,3,1,""],FiniteDimensionalHighestWeightCrystal_TypeE6:[275,3,1,""],FiniteDimensionalHighestWeightCrystal_TypeE7:[275,3,1,""],HighestWeightCrystal:[275,1,1,""]},"sage.combinat.set_partition":{SetPartitions_setparts:[229,3,1,""],less:[229,1,1,""],SetPartition:[229,3,1,""],SetPartitions_all:[229,3,1,""],SetPartitions_set:[229,3,1,""],standard_form:[229,1,1,""],sup:[229,1,1,""],SetPartitions:[229,3,1,""],cyclic_permutations_of_set_partition_iterator:[229,1,1,""],inf:[229,1,1,""],cyclic_permutations_of_set_partition:[229,1,1,""],SetPartitions_setn:[229,3,1,""]},"sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed":{g_matrix:[319,2,1,""],universal_extension:[319,2,1,""],principal_extension:[319,2,1,""],quiver:[319,2,1,""],show:[319,2,1,""],reorient:[319,2,1,""],cluster:[319,2,1,""],mutation_sequence:[319,2,1,""],is_mutation_finite:[319,2,1,""],c_vector:[319,2,1,""],mutate:[319,2,1,""],plot:[319,2,1,""],variable_class:[319,2,1,""],is_acyclic:[319,2,1,""],interact:[319,2,1,""],set_cluster:[319,2,1,""],b_matrix_class_iter:[319,2,1,""],cluster_class:[319,2,1,""],ground_field:[319,2,1,""],c_matrix:[319,2,1,""],cluster_class_iter:[319,2,1,""],coefficient:[319,2,1,""],is_finite:[319,2,1,""],greedy:[319,2,1,""],f_polynomials:[319,2,1,""],reset_coefficients:[319,2,1,""],b_matrix:[319,2,1,""],exchangeable_part:[319,2,1,""],mutation_class_iter:[319,2,1,""],b_matrix_class:[319,2,1,""],cluster_variable:[319,2,1,""],mutation_type:[319,2,1,""],coefficients:[319,2,1,""],g_vector:[319,2,1,""],save_image:[319,2,1,""],variable_class_iter:[319,2,1,""],reset_cluster:[319,2,1,""],m:[319,2,1,""],mutation_class:[319,2,1,""],n:[319,2,1,""],f_polynomial:[319,2,1,""],y:[319,2,1,""],x:[319,2,1,""],is_bipartite:[319,2,1,""]},"sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomialsElement":{weight:[221,2,1,""],f:[221,2,1,""]},"sage.combinat.root_system.type_A_affine.CartanType":{dynkin_diagram:[227,2,1,""],ascii_art:[227,2,1,""],PieriFactors:[227,4,1,""],dual:[227,2,1,""]},"sage.combinat.multichoose_nk":{MultichooseNK:[96,3,1,""]},"sage.combinat.root_system.cartan_type.CartanTypeFactory":{color:[291,5,1,""],global_options:[291,1,1,""],samples:[291,2,1,""]},"sage.combinat.sf.hall_littlewood.HallLittlewood":{Q:[83,2,1,""],P:[83,2,1,""],symmetric_function_ring:[83,2,1,""],base_ring:[83,2,1,""],Qp:[83,2,1,""]},"sage.combinat.ncsf_qsym.combinatorics":{m_to_s_stat:[162,1,1,""],coeff_lp:[162,1,1,""],number_of_SSRCT:[162,1,1,""],coeff_dab:[162,1,1,""],coeff_pi:[162,1,1,""],compositions_order:[162,1,1,""],coeff_sp:[162,1,1,""],coeff_ell:[162,1,1,""],number_of_fCT:[162,1,1,""]},"sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials":{affine_lift:[218,2,1,""],L_check:[218,2,1,""],Q_to_Qcheck:[218,2,1,""],affine_retract:[218,2,1,""],L_prime:[218,2,1,""],rho_prime:[218,2,1,""],L:[218,2,1,""],twist:[218,2,1,""],symmetric_macdonald_polynomial:[218,2,1,""],seed:[218,2,1,""],KL0:[218,2,1,""],L0:[218,2,1,""],Y:[218,2,1,""],cartan_type:[218,2,1,""],eigenvalue_experimental:[218,2,1,""]},"sage.combinat.crystals.kyoto_path_model":{KyotoPathModel:[203,3,1,""]},"sage.combinat.designs.group_divisible_designs.GroupDivisibleDesign":{groups:[278,2,1,""]},"sage.combinat.finite_state_machine.FSMProcessIterator":{current_state:[184,4,1,""],next:[184,2,1,""],Current:[184,3,1,""],output_tape:[184,4,1,""],result:[184,2,1,""],preview_word:[184,2,1,""],accept_input:[184,4,1,""]},"sage.combinat.rigged_configurations.bij_infinity.RCToMLTBijectionTypeD":{run:[10,2,1,""]},"sage.combinat.permutation.Permutations":{global_options:[286,1,1,""],Element:[286,4,1,""]},"sage.combinat.rigged_configurations.bij_infinity.RCToMLTBijectionTypeB":{run:[10,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsPkhalf_k":{cardinality:[169,2,1,""]},"sage.combinat.words.word_generators.WordGenerator":{fibonacci_tile:[307,2,1,""],CharacteristicSturmianWord:[307,2,1,""],RandomWord:[307,2,1,""],ThueMorseWord:[307,2,1,""],ChristoffelWord:[307,4,1,""],FibonacciWord:[307,2,1,""],MinimalSmoothPrefix:[307,2,1,""],dual_fibonacci_tile:[307,2,1,""],KolakoskiWord:[307,2,1,""],LowerMechanicalWord:[307,2,1,""],PalindromicDefectWord:[307,2,1,""],FixedPointOfMorphism:[307,2,1,""],StandardEpisturmianWord:[307,2,1,""],UpperMechanicalWord:[307,2,1,""],UpperChristoffelWord:[307,2,1,""],LowerChristoffelWord:[307,4,1,""],CodingOfRotationWord:[307,2,1,""],s_adic:[307,2,1,""]},"sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux":{from_shape_and_word:[224,2,1,""],from_permutation:[224,2,1,""],global_options:[224,1,1,""],Element:[224,4,1,""]},"sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_generic":{q:[61,2,1,""]},"sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n":{cpi:[61,2,1,""],retract_plain:[61,2,1,""],seminormal_basis:[61,2,1,""],left_action_product:[61,2,1,""],canonical_embedding:[61,2,1,""],dft:[61,2,1,""],semi_rsw_element:[61,2,1,""],algebra_generators:[61,2,1,""],epsilon_ik:[61,2,1,""],cpis:[61,2,1,""],monomial_from_smaller_permutation:[61,2,1,""],retract_direct_product:[61,2,1,""],jucys_murphy:[61,2,1,""],binary_unshuffle_sum:[61,2,1,""],antipode:[61,2,1,""],retract_okounkov_vershik:[61,2,1,""],right_action_product:[61,2,1,""],rsw_shuffling_element:[61,2,1,""]},"sage.combinat.crystals.letters":{EmptyLetter:[290,3,1,""],CrystalOfLetters:[290,1,1,""],ClassicalCrystalOfLetters:[290,3,1,""],Crystal_of_letters_type_E6_element:[290,3,1,""],Crystal_of_letters_type_E7_element:[290,3,1,""],Crystal_of_letters_type_D_element:[290,3,1,""],Crystal_of_letters_type_E6_element_dual:[290,3,1,""],Crystal_of_letters_type_A_element:[290,3,1,""],Crystal_of_letters_type_G_element:[290,3,1,""],Letter:[290,3,1,""],Crystal_of_letters_type_C_element:[290,3,1,""],Crystal_of_letters_type_B_element:[290,3,1,""],LetterTuple:[290,3,1,""]},"sage.combinat.posets.lattices.FiniteMeetSemilattice":{meet_matrix:[29,2,1,""],meet:[29,2,1,""],Element:[29,4,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_321":{cardinality:[286,2,1,""]},"sage.combinat.alternating_sign_matrix.ContreTableaux_n":{cardinality:[212,2,1,""]},"sage.combinat.knutson_tao_puzzles":{HT_two_step_pieces:[52,1,1,""],H_grassmannian_pieces:[52,1,1,""],HT_grassmannian_pieces:[52,1,1,""],PuzzlePiece:[52,3,1,""],RhombusPiece:[52,3,1,""],PuzzleFilling:[52,3,1,""],DeltaPiece:[52,3,1,""],KnutsonTaoPuzzleSolver:[52,3,1,""],K_grassmannian_pieces:[52,1,1,""],NablaPiece:[52,3,1,""],BK_pieces:[52,1,1,""],PuzzlePieces:[52,3,1,""],H_two_step_pieces:[52,1,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods":{star_involution:[140,2,1,""],chi:[140,2,1,""],psi_involution:[140,2,1,""],verschiebung:[140,2,1,""],to_symmetric_group_algebra:[140,2,1,""],omega_involution:[140,2,1,""],to_ncsym:[140,2,1,""],expand:[140,2,1,""],left_padded_kronecker_product:[140,2,1,""],to_descent_algebra:[140,2,1,""],to_symmetric_function:[140,2,1,""],bernstein_creation_operator:[140,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWF":{from_fundamental:[241,2,1,""],from_affine_weyl:[241,2,1,""],simple_reflections:[241,2,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_12":{cardinality:[286,2,1,""]},"sage.combinat.words.suffix_trees.ImplicitSuffixTree":{edge_iterator:[90,2,1,""],word:[90,2,1,""],factor_iterator:[90,2,1,""],show:[90,2,1,""],active_state:[90,2,1,""],plot:[90,2,1,""],to_explicit_suffix_tree:[90,2,1,""],process_letter:[90,2,1,""],states:[90,2,1,""],suffix_link:[90,2,1,""],transition_function:[90,2,1,""],to_digraph:[90,2,1,""],trie_type_dict:[90,2,1,""],transition_function_dictionary:[90,2,1,""],uncompactify:[90,2,1,""],number_of_factors:[90,2,1,""]},"sage.combinat.root_system.type_dual":{CartanType:[13,3,1,""],CartanType_finite:[13,3,1,""],AmbientSpace:[13,3,1,""],CartanType_affine:[13,3,1,""]},"sage.combinat.free_module.CombinatorialFreeModule_Tensor":{tensor_constructor:[141,2,1,""]},"sage.combinat.partition_algebra":{SetPartitionsXkElement:[169,3,1,""],PartitionAlgebra_prk:[169,3,1,""],PartitionAlgebraElement_tk:[169,3,1,""],PartitionAlgebra_tk:[169,3,1,""],PartitionAlgebraElement_ak:[169,3,1,""],SetPartitionsTk_k:[169,3,1,""],SetPartitionsPRkhalf_k:[169,3,1,""],SetPartitionsAk:[169,1,1,""],SetPartitionsSk:[169,1,1,""],to_set_partition:[169,1,1,""],PartitionAlgebraElement_rk:[169,3,1,""],PartitionAlgebra_rk:[169,3,1,""],SetPartitionsIk:[169,1,1,""],SetPartitionsPRk:[169,1,1,""],PartitionAlgebraElement_pk:[169,3,1,""],PartitionAlgebraElement_prk:[169,3,1,""],to_graph:[169,1,1,""],PartitionAlgebra_ak:[169,3,1,""],SetPartitionsSkhalf_k:[169,3,1,""],SetPartitionsBkhalf_k:[169,3,1,""],propagating_number:[169,1,1,""],SetPartitionsAkhalf_k:[169,3,1,""],SetPartitionsRkhalf_k:[169,3,1,""],PartitionAlgebraElement_generic:[169,3,1,""],SetPartitionsSk_k:[169,3,1,""],SetPartitionsPRk_k:[169,3,1,""],PartitionAlgebra_pk:[169,3,1,""],PartitionAlgebraElement_bk:[169,3,1,""],SetPartitionsBk:[169,1,1,""],SetPartitionsTkhalf_k:[169,3,1,""],SetPartitionsPkhalf_k:[169,3,1,""],set_partition_composition:[169,1,1,""],pair_to_graph:[169,1,1,""],SetPartitionsBk_k:[169,3,1,""],create_set_partition_function:[169,1,1,""],SetPartitionsIkhalf_k:[169,3,1,""],identity:[169,1,1,""],PartitionAlgebra_sk:[169,3,1,""],PartitionAlgebraElement_sk:[169,3,1,""],SetPartitionsRk:[169,1,1,""],SetPartitionsTk:[169,1,1,""],SetPartitionsPk:[169,1,1,""],SetPartitionsRk_k:[169,3,1,""],is_planar:[169,1,1,""],PartitionAlgebra_bk:[169,3,1,""],SetPartitionsIk_k:[169,3,1,""],PartitionAlgebra_generic:[169,3,1,""],SetPartitionsPk_k:[169,3,1,""],SetPartitionsAk_k:[169,3,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_ht":{Element:[92,3,1,""]},"sage.combinat.combinatorial_algebra.TestAlgebra":{prefix:[214,2,1,""]},"sage.combinat.sloane_functions.A008275":{s:[56,2,1,""]},"sage.combinat.composition.Composition":{refinement_splitting_lengths:[22,2,1,""],conjugate:[22,2,1,""],inf:[22,2,1,""],ribbon_decomposition:[22,2,1,""],descents:[22,2,1,""],size:[22,2,1,""],shuffle_product:[22,2,1,""],is_finer:[22,2,1,""],to_subset:[22,2,1,""],sum:[22,6,1,""],sup:[22,2,1,""],to_skew_partition:[22,2,1,""],to_partition:[22,2,1,""],complement:[22,2,1,""],finer:[22,2,1,""],peaks:[22,2,1,""],reversed:[22,2,1,""],major_index:[22,2,1,""],to_code:[22,2,1,""],refinement_splitting:[22,2,1,""],fatter:[22,2,1,""],partial_sums:[22,2,1,""],join:[22,2,1,""],wll_gt:[22,2,1,""],meet:[22,2,1,""],fatten:[22,2,1,""],near_concatenation:[22,2,1,""]},"sage.combinat.subset.SubMultiset_sk":{generating_serie:[74,2,1,""],cardinality:[74,2,1,""],random_element:[74,2,1,""]},"sage.combinat.ordered_tree.OrderedTrees":{leaf:[30,2,1,""]},"sage.combinat.words.morphism.WordMorphism":{domain:[5,2,1,""],periodic_point:[5,2,1,""],has_right_conjugate:[5,2,1,""],growing_letters:[5,2,1,""],conjugate:[5,2,1,""],images:[5,2,1,""],pisot_eigenvector_left:[5,2,1,""],codomain:[5,2,1,""],is_endomorphism:[5,2,1,""],rauzy_fractal_plot:[5,2,1,""],has_conjugate_in_classP:[5,2,1,""],is_growing:[5,2,1,""],latex_layout:[5,2,1,""],is_involution:[5,2,1,""],restrict_domain:[5,2,1,""],partition_of_domain_alphabet:[5,2,1,""],is_in_classP:[5,2,1,""],abelian_rotation_subspace:[5,2,1,""],image:[5,2,1,""],is_primitive:[5,2,1,""],is_prolongable:[5,2,1,""],fixed_point:[5,2,1,""],list_of_conjugates:[5,2,1,""],extend_by:[5,2,1,""],is_erasing:[5,2,1,""],dual_map:[5,2,1,""],is_empty:[5,2,1,""],has_left_conjugate:[5,2,1,""],reversal:[5,2,1,""],rauzy_fractal_points:[5,2,1,""],fixed_points:[5,2,1,""],is_uniform:[5,2,1,""],incidence_matrix:[5,2,1,""],periodic_points:[5,2,1,""],is_identity:[5,2,1,""],pisot_eigenvector_right:[5,2,1,""],rauzy_fractal_projection:[5,2,1,""]},"sage.combinat.integer_vector.IntegerVectors_nkconstraints":{cardinality:[130,2,1,""],next:[130,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsIkhalf_k":{cardinality:[169,2,1,""]},"sage.combinat.root_system.type_B_affine":{CartanType:[73,3,1,""]},"sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatterns":{random_element:[58,2,1,""],Element:[58,4,1,""]},"sage.combinat.tableau_tuple.TableauTuples_level_size":{an_element:[301,2,1,""]},"sage.combinat.words.infinite_word.InfiniteWord_class":{length:[192,2,1,""]},"sage.combinat.root_system.type_G.CartanType":{coxeter_number:[234,2,1,""],dual_coxeter_number:[234,2,1,""],dynkin_diagram:[234,2,1,""],ascii_art:[234,2,1,""],dual:[234,2,1,""],AmbientSpace:[234,4,1,""]},"sage.combinat.sf.macdonald.Macdonald":{base_ring:[92,2,1,""],H:[92,2,1,""],symmetric_function_ring:[92,2,1,""],J:[92,2,1,""],Ht:[92,2,1,""],Q:[92,2,1,""],P:[92,2,1,""],S:[92,2,1,""]},"sage.combinat.species.permutation_species":{PermutationSpeciesStructure:[246,3,1,""],PermutationSpecies_class:[246,4,1,""],PermutationSpecies:[246,3,1,""]},"sage.combinat.rigged_configurations.rc_crystal.CrystalOfRiggedConfigurations":{weight_lattice_realization:[264,2,1,""],global_options:[264,1,1,""],Element:[264,4,1,""]},"sage.combinat.root_system.fundamental_group.FundamentalGroupGLElement":{act_on_classical_ambient:[313,2,1,""]},"sage.combinat.root_system.type_F_affine":{CartanType:[194,3,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_odd.KRTToRCBijectionTypeA2Odd":{next_state:[85,2,1,""]},"sage.combinat.posets.linear_extensions":{LinearExtensionsOfPoset:[198,3,1,""],LinearExtensionOfPoset:[198,3,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_E7_element":{e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnPrimitiveElements.ParentMethods":{antipode_on_generators:[140,2,1,""],coproduct_on_generators:[140,2,1,""]},"sage.combinat.parking_functions.ParkingFunctions_n":{cardinality:[128,2,1,""],random_element:[128,2,1,""]},"sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element":{inner_product:[228,2,1,""],weight_multiplicities:[228,2,1,""],branch:[228,2,1,""],degree:[228,2,1,""],symmetric_power:[228,2,1,""],is_irreducible:[228,2,1,""],invariant_degree:[228,2,1,""],exterior_power:[228,2,1,""],multiplicity:[228,2,1,""],frobenius_schur_indicator:[228,2,1,""],exterior_square:[228,2,1,""],symmetric_square:[228,2,1,""],cartan_type:[228,2,1,""],adams_operation:[228,2,1,""]},"sage.combinat.root_system.type_E.AmbientSpace":{negative_roots:[236,2,1,""],positive_roots:[236,2,1,""],fundamental_weights:[236,2,1,""],simple_root:[236,2,1,""],root:[236,2,1,""],dimension:[236,2,1,""]},"sage.combinat.rigged_configurations.bij_infinity.MLTToRCBijectionTypeD":{run:[10,2,1,""]},"sage.combinat.composition_tableau":{CompositionTableaux_all:[166,3,1,""],CompositionTableaux:[166,3,1,""],CompositionTableaux_size:[166,3,1,""],CompositionTableau:[166,3,1,""],CompositionTableauxBacktracker:[166,3,1,""],CompositionTableaux_shape:[166,3,1,""]},"sage.combinat.crystals.spins.Spin":{epsilon:[50,2,1,""],phi:[50,2,1,""],pp:[50,2,1,""],signature:[50,2,1,""]},"sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All.Element":{check:[317,2,1,""]},"sage.combinat.words.words.Words_over_Alphabet":{identity_morphism:[59,2,1,""],size_of_alphabet:[59,2,1,""]},"sage.combinat.shuffle":{SetShuffleProduct:[148,3,1,""],ShuffleProduct:[148,3,1,""]},"sage.combinat.sloane_functions.A005117":{list:[56,2,1,""]},"sage.combinat.affine_permutation.AffinePermutationGroupTypeC":{Element:[287,4,1,""]},"sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t":{t_action:[61,2,1,""],algebra_generators:[61,2,1,""],jucys_murphy:[61,2,1,""],t:[61,2,1,""],t_action_on_basis:[61,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_boxElement":{f0:[106,2,1,""],epsilon0:[106,2,1,""],e0:[106,2,1,""],phi0:[106,2,1,""]},"sage.combinat.partition.OrderedPartitions":{cardinality:[306,2,1,""],list:[306,2,1,""]},"sage.combinat.species.combinatorial_logarithm":{CombinatorialLogarithmSeries:[41,1,1,""]},"sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical":{Element:[174,3,1,""]},"sage.combinat.tableau_tuple.TableauTuple":{row_stabilizer:[301,2,1,""],cocharge:[301,2,1,""],to_list:[301,2,1,""],restrict:[301,2,1,""],shape:[301,2,1,""],conjugate:[301,2,1,""],size:[301,2,1,""],pp:[301,2,1,""],to_word_by_row:[301,2,1,""],charge:[301,2,1,""],to_word:[301,2,1,""],is_row_strict:[301,2,1,""],cells_containing:[301,2,1,""],column_stabilizer:[301,2,1,""],to_permutation:[301,2,1,""],Element:[301,4,1,""],is_standard:[301,2,1,""],entries:[301,2,1,""],is_column_strict:[301,2,1,""],symmetric_group_action_on_entries:[301,2,1,""],level:[301,2,1,""],up:[301,2,1,""],add_entry:[301,2,1,""],components:[301,2,1,""],entry:[301,2,1,""],to_word_by_column:[301,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class":{WF:[241,2,1,""],ExtendedAffineWeylGroupFW:[241,3,1,""],ExtendedAffineWeylGroupW0PvElement:[241,3,1,""],PW0:[241,2,1,""],FW:[241,2,1,""],ExtendedAffineWeylGroupPW0:[241,3,1,""],group_generators:[241,2,1,""],fundamental_group:[241,2,1,""],ExtendedAffineWeylGroupW0Pv:[241,3,1,""],classical_weyl_to_affine:[241,2,1,""],ExtendedAffineWeylGroupW0P:[241,3,1,""],ExtendedAffineWeylGroupPW0Element:[241,3,1,""],Realizations:[241,3,1,""],lattice:[241,2,1,""],affine_weyl:[241,2,1,""],dual_lattice:[241,2,1,""],PvW0:[241,2,1,""],ExtendedAffineWeylGroupWFElement:[241,3,1,""],dual_classical_weyl_to_affine:[241,2,1,""],lattice_basis:[241,2,1,""],ExtendedAffineWeylGroupPvW0Element:[241,3,1,""],dual_lattice_basis:[241,2,1,""],dual_classical_weyl:[241,2,1,""],ExtendedAffineWeylGroupFWElement:[241,3,1,""],ExtendedAffineWeylGroupW0PElement:[241,3,1,""],W0P:[241,2,1,""],a_realization:[241,2,1,""],W0Pv:[241,2,1,""],ExtendedAffineWeylGroupWF:[241,3,1,""],classical_weyl:[241,2,1,""],exp_dual_lattice:[241,2,1,""],ExtendedAffineWeylGroupPvW0:[241,3,1,""],exp_lattice:[241,2,1,""],PW0_to_WF_func:[241,2,1,""],WF_to_PW0_func:[241,2,1,""],cartan_type:[241,2,1,""]},"sage.combinat.species.structure.SpeciesStructure":{parent:[149,2,1,""]},"sage.combinat.yang_baxter_graph.YangBaxterGraph_partition":{vertex_relabelling_dict:[288,2,1,""],relabel_vertices:[288,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsRkhalf_k":{cardinality:[169,2,1,""]},"sage.combinat.species.library":{BinaryForestSpecies:[230,1,1,""],SimpleGraphSpecies:[230,1,1,""],BinaryTreeSpecies:[230,1,1,""]},"sage.combinat.skew_tableau.SemistandardSkewTableaux_shape":{cardinality:[122,2,1,""]},"sage.combinat.rsk":{robinson_schensted_knuth_inverse:[262,1,1,""],robinson_schensted_knuth:[262,1,1,""],to_matrix:[262,1,1,""],RSK_inverse:[262,1,1,""],RSK:[262,1,1,""]},"sage.combinat.graph_path.GraphPaths_all":{list:[200,2,1,""]},"sage.combinat.integer_vector":{list2func:[130,1,1,""],IntegerVectors_nkconstraints:[130,3,1,""],IntegerVectors_nk:[130,3,1,""],IntegerVectors_nnondescents:[130,3,1,""],IntegerVectors_nconstraints:[130,3,1,""],constant_func:[130,1,1,""],is_gale_ryser:[130,1,1,""],IntegerVectors_all:[130,3,1,""],gale_ryser_theorem:[130,1,1,""],IntegerVectors:[130,1,1,""]},"sage.combinat.affine_permutation.AffinePermutation":{inverse:[287,2,1,""],grassmannian_quotient:[287,2,1,""],index_set:[287,2,1,""],to_weyl_group_element:[287,2,1,""],lower_covers:[287,2,1,""],is_one:[287,2,1,""],apply_simple_reflection:[287,2,1,""],is_i_grassmannian:[287,2,1,""],signature:[287,2,1,""],reduced_word:[287,2,1,""]},"sage.combinat.set_partition.SetPartition":{restriction:[229,2,1,""],strict_coarsenings:[229,2,1,""],shape:[229,2,1,""],coarsenings:[229,2,1,""],standard_form:[229,2,1,""],inf:[229,2,1,""],apply_permutation:[229,2,1,""],check:[229,2,1,""],size:[229,2,1,""],refinements:[229,2,1,""],sup:[229,2,1,""],to_partition:[229,2,1,""],to_permutation:[229,2,1,""],arcs:[229,2,1,""],base_set:[229,2,1,""],ordered_set_partition_action:[229,2,1,""],is_noncrossing:[229,2,1,""],shape_partition:[229,2,1,""],is_atomic:[229,2,1,""],cardinality:[229,2,1,""],standardization:[229,2,1,""],pipe:[229,2,1,""],base_set_cardinality:[229,2,1,""]},"sage.combinat.words.word_datatypes":{WordDatatype_str:[150,3,1,""],WordDatatype_tuple:[150,3,1,""],WordDatatype_list:[150,3,1,""],WordDatatype:[150,3,1,""]},"sage.combinat.species.series_order":{bounded_decrement:[316,1,1,""],SeriesOrderElement:[316,3,1,""],UnknownSeriesOrder:[316,3,1,""],InfiniteSeriesOrder:[316,3,1,""],increment:[316,1,1,""]},"sage.combinat.crystals.monomial_crystals.NakajimaAMonomial":{phi:[221,2,1,""],e:[221,2,1,""],weight:[221,2,1,""],f:[221,2,1,""],weight_in_root_lattice:[221,2,1,""],epsilon:[221,2,1,""],to_Y_monomial:[221,2,1,""]},"sage.combinat.rigged_configurations.bij_type_D_twisted.RCToKRTBijectionTypeDTwisted":{run:[197,2,1,""],next_state:[197,2,1,""]},"sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods":{antipode_by_coercion:[68,2,1,""],carlitz_shareshian_wachs:[68,2,1,""],is_integral_domain:[68,2,1,""],is_commutative:[68,2,1,""],gessel_reutenauer:[68,2,1,""],degree_on_basis:[68,2,1,""],one_basis:[68,2,1,""],is_field:[68,2,1,""],degree_negation:[68,2,1,""],counit:[68,2,1,""],corresponding_basis_over:[68,2,1,""],Eulerian:[68,2,1,""]},"sage.combinat.rigged_configurations.bij_abstract_class.KRTToRCBijectionAbstract":{run:[113,2,1,""],next_state:[113,2,1,""]},"sage.combinat.e_one_star":{E1Star:[93,3,1,""],Face:[93,3,1,""],Patch:[93,3,1,""]},"sage.combinat.designs.orthogonal_arrays.OAMainFunctions":{explain_construction:[144,6,1,""],is_available:[144,6,1,""],largest_available_k:[144,6,1,""],exists:[144,6,1,""],build:[144,6,1,""]},"sage.combinat.tableau_tuple.TableauTuples_all":{an_element:[301,2,1,""]},"sage.combinat.integer_list":{IntegerListsNN:[269,1,1,""],Envelope:[269,3,1,""],IntegerListsLexIter:[269,3,1,""],IntegerListsLex:[269,3,1,""]},"sage.combinat.posets.lattices.FiniteLatticePoset":{is_complemented:[29,2,1,""],complements:[29,2,1,""],is_modular:[29,2,1,""],is_lower_semimodular:[29,2,1,""],sublattice:[29,2,1,""],Element:[29,4,1,""],is_supersolvable:[29,2,1,""],is_distributive:[29,2,1,""],is_upper_semimodular:[29,2,1,""],is_atomic:[29,2,1,""],is_modular_element:[29,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement":{dual_action:[241,2,1,""],has_descent:[241,2,1,""],to_dual_translation_right:[241,2,1,""],to_dual_classical_weyl:[241,2,1,""]},"sage.combinat.sloane_functions.A000073":{list:[56,2,1,""]},"sage.combinat.tiling":{orthogonal_transformation:[40,1,1,""],Polyomino:[40,3,1,""],TilingSolver:[40,3,1,""]},"sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial.Element":{expand:[322,2,1,""]},"sage.combinat.root_system.type_A":{CartanType:[240,3,1,""],AmbientSpace:[240,3,1,""]},"sage.combinat.root_system.type_B":{CartanType:[239,3,1,""],AmbientSpace:[239,3,1,""]},"sage.combinat.root_system.type_C":{CartanType:[238,3,1,""],AmbientSpace:[238,3,1,""]},"sage.combinat.root_system.type_D":{CartanType:[237,3,1,""],AmbientSpace:[237,3,1,""]},"sage.combinat.binary_tree.LabelledBinaryTree":{left_rotate:[285,2,1,""],right_rotate:[285,2,1,""],binary_search_insert:[285,2,1,""],semistandard_insert:[285,2,1,""],heap_insert:[285,2,1,""]},"sage.combinat.root_system.type_F":{CartanType:[235,3,1,""],AmbientSpace:[235,3,1,""]},"sage.combinat.root_system.ambient_space.AmbientSpaceElement":{is_positive_root:[295,2,1,""],dot_product:[295,2,1,""],inner_product:[295,2,1,""],coerce_to_e7:[295,2,1,""],coerce_to_e6:[295,2,1,""],associated_coroot:[295,2,1,""],to_ambient:[295,2,1,""],scalar:[295,2,1,""],coerce_to_sl:[295,2,1,""]},"sage.combinat.root_system.type_H":{CartanType:[233,3,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases":{super_categories:[272,2,1,""],ElementMethods:[272,3,1,""],ParentMethods:[272,3,1,""]},"sage.combinat.species.sum_species.SumSpecies":{weight_ring:[196,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases":{super_categories:[140,2,1,""],ParentMethods:[140,3,1,""]},"sage.combinat.crystals.letters.LetterTuple":{epsilon:[290,2,1,""],phi:[290,2,1,""],value:[290,4,1,""]},"sage.combinat.enumeration_mod_permgroup":{canonical_children:[87,1,1,""],lex_cmp_partial:[87,1,1,""],orbit:[87,1,1,""],lex_cmp:[87,1,1,""],is_canonical:[87,1,1,""],all_children:[87,1,1,""],canonical_representative_of_orbit_of:[87,1,1,""]},"sage.combinat.partition":{PartitionsInBox:[306,3,1,""],RestrictedPartitions:[306,1,1,""],Partition:[306,3,1,""],Partitions_parts_in:[306,3,1,""],number_of_partitions_length:[306,1,1,""],Partitions_starting:[306,3,1,""],Partitions_nk:[306,3,1,""],Partitions_constraints:[306,3,1,""],Partitions_all:[306,3,1,""],Partitions_all_bounded:[306,3,1,""],PartitionsGreatestEQ:[306,3,1,""],Partitions_ending:[306,3,1,""],PartitionsGreatestLE:[306,3,1,""],RestrictedPartitions_nsk:[306,3,1,""],Partitions_n:[306,3,1,""],number_of_partitions:[306,1,1,""],OrderedPartitions:[306,3,1,""],Partitions:[306,3,1,""]},"sage.combinat.root_system.type_C_affine.CartanType":{dynkin_diagram:[44,2,1,""],ascii_art:[44,2,1,""],PieriFactors:[44,4,1,""]},"sage.combinat.crystals.tensor_product.TensorProductOfRegularCrystalsWithGenerators":{Element:[21,4,1,""]},"sage.combinat.root_system.type_BC_affine":{CartanType:[32,3,1,""]},"sage.combinat.lyndon_word.LyndonWords_nk":{cardinality:[98,2,1,""]},"sage.combinat.choose_nk":{from_rank:[63,1,1,""],rank:[63,1,1,""],ChooseNK:[63,1,1,""]},"sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA":{next_state:[105,2,1,""]},"sage.combinat.dyck_word.CompleteDyckWords_all":{height_poset:[256,3,1,""]},"sage.combinat.root_system.type_marked.CartanType":{marked_nodes:[89,2,1,""],relabel:[89,2,1,""],dynkin_diagram:[89,2,1,""],ascii_art:[89,2,1,""],dual:[89,2,1,""],type:[89,2,1,""]},"sage.combinat.symmetric_group_algebra":{a:[61,1,1,""],SymmetricGroupAlgebra:[61,1,1,""],e_ik:[61,1,1,""],seminormal_test:[61,1,1,""],epsilon:[61,1,1,""],e_hat:[61,1,1,""],SymmetricGroupAlgebra_n:[61,3,1,""],HeckeAlgebraSymmetricGroup_t:[61,3,1,""],pi_ik:[61,1,1,""],epsilon_ik:[61,1,1,""],kappa:[61,1,1,""],HeckeAlgebraSymmetricGroup_generic:[61,3,1,""],b:[61,1,1,""],HeckeAlgebraSymmetricGroupT:[61,1,1,""],e:[61,1,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_affine_type":{maximal_elements:[225,2,1,""]},"sage.combinat.words.word_datatypes.WordDatatype_list":{count:[150,2,1,""],length:[150,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0":{simple_reflections:[241,2,1,""],from_dual_translation:[241,2,1,""],from_dual_classical_weyl:[241,2,1,""]},"sage.combinat.skew_tableau.StandardSkewTableaux_shape":{cardinality:[122,2,1,""]},"sage.combinat.sloane_functions.A001694":{is_powerful:[56,2,1,""],list:[56,2,1,""]},"sage.combinat.words.word_options":{WordOptions:[60,1,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial":{internal_coproduct_on_basis:[115,2,1,""],sum_of_partitions:[115,2,1,""],Element:[115,3,1,""],duality_pairing:[115,2,1,""],dual_basis:[115,2,1,""],coproduct_on_basis:[115,2,1,""],product_on_basis:[115,2,1,""],from_symmetric_function:[115,2,1,""]},"sage.combinat.backtrack":{PositiveIntegerSemigroup:[147,3,1,""],TransitiveIdealGraded:[147,3,1,""],search_forest_iterator:[147,1,1,""],TransitiveIdeal:[147,3,1,""],GenericBacktracker:[147,3,1,""],SearchForest:[147,3,1,""]},"sage.combinat.tableau_tuple.StandardTableauTuples_size":{an_element:[301,2,1,""]},"sage.combinat.crystals.elementary_crystals.ElementaryCrystal.Element":{epsilon:[254,2,1,""],phi:[254,2,1,""],e:[254,2,1,""],weight:[254,2,1,""],f:[254,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element":{action:[241,2,1,""],to_translation_left:[241,2,1,""],has_descent:[241,2,1,""],to_classical_weyl:[241,2,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Phi":{Element:[140,3,1,""]},"sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic":{coproduct_by_coercion:[68,2,1,""],from_polynomial:[68,2,1,""],symmetric_function_ring:[68,2,1,""],transition_matrix:[68,2,1,""],Element:[68,4,1,""],prefix:[68,2,1,""],dual_basis:[68,2,1,""],set_print_style:[68,2,1,""],get_print_style:[68,2,1,""],basis_name:[68,2,1,""],product_by_coercion:[68,2,1,""]},"sage.combinat.root_system.plot.PlotOptions":{projection:[276,2,1,""],finalize:[276,2,1,""],in_bounding_box:[276,2,1,""],color:[276,2,1,""],text:[276,2,1,""],reflection_hyperplane:[276,2,1,""],index_of_object:[276,2,1,""],thickness:[276,2,1,""],intersection_at_level_1:[276,2,1,""],cone:[276,2,1,""],family_of_vectors:[276,2,1,""],empty:[276,2,1,""]},"sage.combinat.species.product_species":{ProductSpecies_class:[71,4,1,""],ProductSpeciesStructure:[71,3,1,""],ProductSpecies:[71,3,1,""]},"sage.combinat.interval_posets.TamariIntervalPosets_all":{Element:[185,4,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.HazewinkelLambda":{product_on_basis:[272,2,1,""]},"sage.combinat.cyclic_sieving_phenomenon":{CyclicSievingPolynomial:[172,1,1,""],orbit_decomposition:[172,1,1,""],CyclicSievingCheck:[172,1,1,""]},"sage.combinat.free_module.CombinatorialFreeModule_CartesianProduct":{summand_embedding:[141,2,1,""],cartesian_embedding:[141,2,1,""],Element:[141,3,1,""],summand_projection:[141,2,1,""],cartesian_projection:[141,2,1,""],cartesian_factors:[141,2,1,""]},"sage.combinat.crystals.generalized_young_walls":{CrystalOfGeneralizedYoungWalls:[108,3,1,""],GeneralizedYoungWall:[108,3,1,""],CrystalOfGeneralizedYoungWallsElement:[108,3,1,""],InfinityCrystalOfGeneralizedYoungWalls:[108,3,1,""]},"sage.combinat.free_module.CombinatorialFreeModule":{sum_of_monomials:[141,2,1,""],term:[141,2,1,""],Tensor:[141,4,1,""],monomial:[141,2,1,""],sum:[141,2,1,""],sum_of_terms:[141,2,1,""],set_order:[141,2,1,""],gens:[141,2,1,""],monomial_or_zero_if_none:[141,2,1,""],Element:[141,4,1,""],get_order:[141,2,1,""],get_order_cmp:[141,2,1,""],zero:[141,2,1,""],from_vector:[141,2,1,""],CartesianProduct:[141,4,1,""],dimension:[141,2,1,""],linear_combination:[141,2,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeHorizonal":{from_kirillov_reshetikhin_crystal:[281,2,1,""]},"sage.combinat.root_system.type_marked":{CartanType:[89,3,1,""],CartanType_finite:[89,3,1,""],AmbientSpace:[89,3,1,""],CartanType_affine:[89,3,1,""]},"sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux_shape":{last:[224,2,1,""],first:[224,2,1,""]},"sage.combinat.core":{Core:[99,3,1,""],Cores:[99,1,1,""],Cores_size:[99,3,1,""],Cores_length:[99,3,1,""]},"sage.combinat.ordered_tree.LabelledOrderedTree":{sort_key:[30,2,1,""],left_right_symmetry:[30,2,1,""]},"sage.combinat.six_vertex_model":{SixVertexConfiguration:[223,3,1,""],SquareIceModel:[223,3,1,""],SixVertexModel:[223,3,1,""]},"sage.combinat.symmetric_group_representations.SpechtRepresentation":{scalar_product_matrix:[75,2,1,""],representation_matrix:[75,2,1,""],scalar_product:[75,2,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeVertical":{from_kirillov_reshetikhin_crystal:[281,2,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P":{S0:[241,2,1,""],from_classical_weyl:[241,2,1,""],simple_reflections:[241,2,1,""],from_translation:[241,2,1,""],simple_reflection:[241,2,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_213":{cardinality:[286,2,1,""]},"sage.combinat.root_system.ambient_space.AmbientSpace":{smallest_base_ring:[295,5,1,""],reflection:[295,2,1,""],from_vector_notation:[295,2,1,""],to_ambient_space_morphism:[295,2,1,""],simple_coroot:[295,2,1,""],coroot_lattice:[295,2,1,""],fundamental_weight:[295,2,1,""],dimension:[295,2,1,""]},"sage.combinat.rooted_tree.LabelledRootedTree":{sort_key:[48,2,1,""]},"sage.combinat.crystals.elementary_crystals.ComponentCrystal.Element":{epsilon:[254,2,1,""],phi:[254,2,1,""],weight:[254,2,1,""]},"sage.combinat.composition.Compositions_all":{subset:[22,2,1,""]},"sage.combinat.matrices.latin":{tau_to_bitrade:[0,1,1,""],is_same_shape:[0,1,1,""],is_primary_bitrade:[0,1,1,""],bitrade:[0,1,1,""],check_bitrade_generators:[0,1,1,""],isotopism:[0,1,1,""],column_containing_sym:[0,1,1,""],is_disjoint:[0,1,1,""],group_to_LatinSquare:[0,1,1,""],row_containing_sym:[0,1,1,""],bitrade_from_group:[0,1,1,""],tau2:[0,1,1,""],tau3:[0,1,1,""],tau1:[0,1,1,""],beta3:[0,1,1,""],tau123:[0,1,1,""],beta1:[0,1,1,""],direct_product:[0,1,1,""],alternating_group_bitrade_generators:[0,1,1,""],beta2:[0,1,1,""],next_conjugate:[0,1,1,""],is_row_and_col_balanced:[0,1,1,""],dlxcpp_find_completions:[0,1,1,""],cells_map_as_square:[0,1,1,""],back_circulant:[0,1,1,""],elementary_abelian_2group:[0,1,1,""],LatinSquare_generator:[0,1,1,""],coin:[0,1,1,""],is_bitrade:[0,1,1,""],pq_group_bitrade_generators:[0,1,1,""],p3_group_bitrade_generators:[0,1,1,""],LatinSquare:[0,3,1,""],forward_circulant:[0,1,1,""],genus:[0,1,1,""],dlxcpp_rows_and_map:[0,1,1,""]},"sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual":{w:[27,3,1,""],a_realization:[27,2,1,""],dual:[27,2,1,""]},"sage.combinat.root_system.type_H.CartanType":{coxeter_diagram:[233,2,1,""],coxeter_number:[233,2,1,""]},"sage.combinat.sloane_functions.A008277":{s2:[56,2,1,""]},"sage.combinat.root_system.root_space":{RootSpaceElement:[155,3,1,""],RootSpace:[155,3,1,""]},"sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion":{inverse_automorphism:[265,2,1,""],automorphism:[265,2,1,""],Element:[265,4,1,""]},"sage.combinat.alternating_sign_matrix.TruncatedStaircases_nlastcolumn":{cardinality:[212,2,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF":{super_categories:[201,2,1,""],ElementMethods:[201,3,1,""],ParentMethods:[201,3,1,""]},"sage.combinat.partition.Partitions_all":{subset:[306,2,1,""],from_beta_numbers:[306,2,1,""],from_frobenius_coordinates:[306,2,1,""],from_exp:[306,2,1,""],from_core_and_quotient:[306,2,1,""],from_zero_one:[306,2,1,""]},"sage.combinat.ribbon_shaped_tableau.RibbonShapedTableaux":{from_shape_and_word:[224,2,1,""],global_options:[224,1,1,""],Element:[224,4,1,""]},"sage.combinat.root_system.type_affine.AmbientSpace":{smallest_base_ring:[259,5,1,""],is_extended:[259,2,1,""],simple_coroot:[259,2,1,""],Element:[259,3,1,""],coroot_lattice:[259,2,1,""],simple_root:[259,2,1,""],fundamental_weight:[259,2,1,""]},"sage.combinat.skew_partition.SkewPartition":{k_conjugate:[211,2,1,""],column_lengths:[211,2,1,""],conjugate:[211,2,1,""],frobenius_rank:[211,2,1,""],size:[211,2,1,""],pp:[211,2,1,""],outer:[211,2,1,""],to_dag:[211,2,1,""],is_ribbon:[211,2,1,""],overlap:[211,2,1,""],pieri_macdonald_coeffs:[211,2,1,""],inner:[211,2,1,""],cell_poset:[211,2,1,""],columns_intersection_set:[211,2,1,""],row_lengths:[211,2,1,""],diagram:[211,2,1,""],is_overlap:[211,2,1,""],inner_corners:[211,2,1,""],ferrers_diagram:[211,2,1,""],cells:[211,2,1,""],to_list:[211,2,1,""],rows_intersection_set:[211,2,1,""],jacobi_trudi:[211,2,1,""],outer_corners:[211,2,1,""],is_connected:[211,2,1,""],quotient:[211,2,1,""]},"sage.combinat.designs.difference_matrices":{difference_matrix_product:[131,1,1,""],difference_matrix:[131,1,1,""],find_product_decomposition:[131,1,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods":{to_translation_right:[241,2,1,""],is_grassmannian:[241,2,1,""],face_data:[241,2,1,""],to_affine_grassmannian:[241,2,1,""],first_descent:[241,2,1,""],alcove_walk_signs:[241,2,1,""],action_on_affine_roots:[241,2,1,""],to_fundamental_group:[241,2,1,""],to_affine_weyl_left:[241,2,1,""],has_descent:[241,2,1,""],is_translation:[241,2,1,""],to_dual_classical_weyl:[241,2,1,""],bruhat_le:[241,2,1,""],to_dual_translation_left:[241,2,1,""],to_affine_weyl_right:[241,2,1,""],dual_action:[241,2,1,""],to_translation_left:[241,2,1,""],apply_simple_projection:[241,2,1,""],to_classical_weyl:[241,2,1,""],length:[241,2,1,""],apply_simple_reflection:[241,2,1,""],is_affine_grassmannian:[241,2,1,""],action:[241,2,1,""],coset_representative:[241,2,1,""],to_dual_translation_right:[241,2,1,""]},"sage.combinat.root_system.type_dual.CartanType_affine":{basic_untwisted:[13,2,1,""],special_node:[13,2,1,""],classical:[13,2,1,""]},"sage.combinat.root_system.weight_space.WeightSpace":{is_extended:[243,2,1,""],to_ambient_space_morphism:[243,2,1,""],Element:[243,4,1,""],simple_root:[243,2,1,""],basis_extension:[243,2,1,""],fundamental_weight:[243,2,1,""]},"sage.combinat.dict_addition":{dict_addition:[248,1,1,""],dict_linear_combination:[248,1,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.supercharacter":{q:[115,2,1,""]},"sage.combinat.finite_state_machine.Transducer":{process:[184,2,1,""],simplification:[184,2,1,""],intersection:[184,2,1,""],cartesian_product:[184,2,1,""]},"sage.combinat.symmetric_group_representations.SpechtRepresentations":{object_class:[75,4,1,""]},"sage.combinat.sf.macdonald.MacdonaldPolynomials_generic":{c2:[92,2,1,""],c1:[92,2,1,""],macdonald_family:[92,2,1,""],Element:[92,3,1,""]},"sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE":{module_generator:[275,2,1,""],Element:[275,4,1,""]},"sage.combinat.alternating_sign_matrix":{AlternatingSignMatrices:[212,3,1,""],nw_corner_sum:[212,1,1,""],MonotoneTriangles:[212,3,1,""],TruncatedStaircases:[212,3,1,""],AlternatingSignMatrix:[212,3,1,""],TruncatedStaircases_nlastcolumn:[212,3,1,""],ContreTableaux_n:[212,3,1,""],ContreTableaux:[212,3,1,""]},"sage.combinat.misc.DoublyLinkedList":{head:[154,2,1,""],prev:[154,2,1,""],hide:[154,2,1,""],unhide:[154,2,1,""],next:[154,2,1,""]},"sage.combinat.words.shuffle_product.ShuffleProduct_w1w2":{cardinality:[34,2,1,""]},"sage.combinat.crystals.spins.Spin_crystal_type_B_element":{e:[50,2,1,""],f:[50,2,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental":{antipode_on_basis:[272,2,1,""],coproduct_on_basis:[272,2,1,""],Eulerian:[272,2,1,""],dual:[272,2,1,""],Element:[272,3,1,""]},"sage.combinat.designs.subhypergraph_search.SubHypergraphSearch":{relabel_heuristic:[146,2,1,""]},"sage.combinat.binary_recurrence_sequences":{BinaryRecurrenceSequence:[65,3,1,""]},"sage.combinat.crystals.tensor_product.TensorProductOfRegularCrystalsElement":{phi:[21,2,1,""],positions_of_unmatched_minus:[21,2,1,""],e:[21,2,1,""],weight:[21,2,1,""],affine_grading:[21,2,1,""],f:[21,2,1,""],epsilon:[21,2,1,""],e_string_to_ground_state:[21,2,1,""],positions_of_unmatched_plus:[21,2,1,""],energy_function:[21,2,1,""]},"sage.combinat.ncsym":{ncsym:[115,0,0,"-"],bases:[297,0,0,"-"],dual:[27,0,0,"-"],"__init__":[226,0,0,"-"],all:[79,0,0,"-"]},"sage.combinat.root_system.type_B.AmbientSpace":{negative_roots:[239,2,1,""],positive_roots:[239,2,1,""],dimension:[239,2,1,""],fundamental_weight:[239,2,1,""],root:[239,2,1,""],simple_root:[239,2,1,""]},"sage.combinat.knutson_tao_puzzles.KnutsonTaoPuzzleSolver":{plot:[52,2,1,""],solutions:[52,2,1,""],structure_constants:[52,2,1,""],puzzle_pieces:[52,2,1,""]},"sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct":{super_categories:[201,2,1,""],Realizations:[201,3,1,""],ElementMethods:[201,3,1,""],ParentMethods:[201,3,1,""]},"sage.combinat.tableau_tuple.StandardTableauTuples_level":{an_element:[301,2,1,""]},"sage.combinat.root_system.weyl_characters.WeylCharacterRing":{base_ring:[228,2,1,""],positive_roots:[228,2,1,""],rank:[228,2,1,""],ambient:[228,2,1,""],fundamental_weights:[228,2,1,""],adjoint_representation:[228,2,1,""],space:[228,2,1,""],simple_roots:[228,2,1,""],extended_dynkin_diagram:[228,2,1,""],maximal_subgroup:[228,2,1,""],lift_on_basis:[228,2,1,""],retract:[228,2,1,""],maximal_subgroups:[228,2,1,""],Element:[228,3,1,""],char_from_weights:[228,2,1,""],dynkin_diagram:[228,2,1,""],lift:[228,2,1,""],dot_reduce:[228,2,1,""],some_elements:[228,2,1,""],irr_repr:[228,2,1,""],demazure_character:[228,2,1,""],one_basis:[228,2,1,""],simple_coroots:[228,2,1,""],product_on_basis:[228,2,1,""],cartan_type:[228,2,1,""],highest_root:[228,2,1,""]},"sage.combinat.rigged_configurations.bijection":{KRTToRCBijection:[292,1,1,""],RCToKRTBijection:[292,1,1,""]},"sage.combinat.six_vertex_model.SixVertexConfiguration":{plot:[223,2,1,""],to_signed_matrix:[223,2,1,""],check:[223,2,1,""],energy:[223,2,1,""]},"sage.combinat.crystals.polyhedral_realization":{InfinityCrystalAsPolyhedralRealization:[26,3,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Psi":{internal_product_on_basis_by_bracketing:[140,2,1,""],Element:[140,3,1,""]},"sage.combinat.posets.incidence_algebras":{IncidenceAlgebra:[193,3,1,""],ReducedIncidenceAlgebra:[193,3,1,""]},"sage.combinat.rigged_configurations.kleber_tree":{KleberTreeTypeA2Even:[207,3,1,""],VirtualKleberTree:[207,3,1,""],KleberTreeNode:[207,3,1,""],KleberTree:[207,3,1,""]},"sage.combinat.words.word_generators.LowerChristoffelWord":{markoff_number:[307,2,1,""],standard_factorization:[307,2,1,""]},"sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract":{is_skew_symmetric:[35,2,1,""],plot:[35,2,1,""],is_elliptic:[35,2,1,""],show:[35,2,1,""],cartan_matrix:[35,2,1,""],is_irreducible:[35,2,1,""],is_finite:[35,2,1,""],rank:[35,2,1,""],b_matrix:[35,2,1,""],standard_quiver:[35,2,1,""],is_simply_laced:[35,2,1,""],letter:[35,2,1,""],is_mutation_finite:[35,2,1,""],is_affine:[35,2,1,""],properties:[35,2,1,""]},"sage.combinat.necklace":{Necklaces:[187,1,1,""],Necklaces_evaluation:[187,3,1,""]},"sage.combinat.species.species":{GenericCombinatorialSpecies:[66,3,1,""]},"sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial":{antipode_on_basis:[272,2,1,""],Element:[272,3,1,""],lambda_of_monomial:[272,2,1,""],dual:[272,2,1,""],product_on_basis:[272,2,1,""],coproduct_on_basis:[272,2,1,""]},"sage.combinat.partition.PartitionsGreatestLE":{global_options:[306,1,1,""],Element:[306,4,1,""]},"sage.combinat.rigged_configurations.kleber_tree.KleberTreeNode":{multiplicity:[207,2,1,""],depth:[207,2,1,""]},"sage.combinat.sf.new_kschur":{K_kSchur:[298,3,1,""],KBoundedSubspaceBases:[298,3,1,""],kHomogeneous:[298,3,1,""],kSchur:[298,3,1,""],KBoundedSubspace:[298,3,1,""]},"sage.combinat.partition_algebra.SetPartitionsAk_k":{Element:[169,4,1,""]},"sage.combinat.root_system.non_symmetric_macdonald_polynomials":{NonSymmetricMacdonaldPolynomials:[218,3,1,""]},"sage.combinat.shard_order":{shard_poset:[300,1,1,""],ShardPosetElement:[300,3,1,""],shard_preorder_graph:[300,1,1,""]},"sage.combinat.root_system.type_D.CartanType":{coxeter_number:[237,2,1,""],dual_coxeter_number:[237,2,1,""],dynkin_diagram:[237,2,1,""],ascii_art:[237,2,1,""],is_atomic:[237,2,1,""],AmbientSpace:[237,4,1,""]},"sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power":{bottom_schur_function:[258,2,1,""],antipode_on_basis:[258,2,1,""],coproduct_on_generators:[258,2,1,""],Element:[258,3,1,""]},"sage.combinat.permutation.StandardPermutations_n":{rank:[286,2,1,""],cardinality:[286,2,1,""],simple_reflection:[286,2,1,""],algebra:[286,2,1,""],conjugacy_classes_representatives:[286,2,1,""],index_set:[286,2,1,""],random_element:[286,2,1,""],one:[286,2,1,""],element_in_conjugacy_classes:[286,2,1,""],unrank:[286,2,1,""],conjugacy_classes:[286,2,1,""],conjugacy_class:[286,2,1,""],Element:[286,3,1,""],cartan_type:[286,2,1,""],identity:[286,2,1,""],conjugacy_classes_iterator:[286,2,1,""]},"sage.combinat.similarity_class_type.PrimarySimilarityClassTypes":{Element:[222,4,1,""],size:[222,2,1,""]},"sage.combinat.gray_codes":{combinations:[102,1,1,""],product:[102,1,1,""]},"sage.combinat.subsets_pairwise.PairwiseCompatibleSubsets":{post_process:[111,2,1,""],children:[111,2,1,""]},"sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching":{flush:[36,2,1,""]},"sage.combinat.words.finite_word.FiniteWord_class":{abelian_vector:[42,2,1,""],length_maximal_palindrome:[42,2,1,""],apply_permutation_to_positions:[42,2,1,""],lengths_maximal_palindromes:[42,2,1,""],lengths_lps:[42,2,1,""],cocharge:[42,2,1,""],is_full:[42,2,1,""],return_words:[42,2,1,""],shuffle:[42,2,1,""],commutes_with:[42,2,1,""],is_cube_free:[42,2,1,""],factor_set:[42,2,1,""],conjugates:[42,2,1,""],BWT:[42,2,1,""],apply_permutation_to_letters:[42,2,1,""],left_special_factors:[42,2,1,""],is_palindrome:[42,2,1,""],charge:[42,2,1,""],is_balanced:[42,2,1,""],swap:[42,2,1,""],standard_permutation:[42,2,1,""],rev_lex_less:[42,2,1,""],is_primitive:[42,2,1,""],lengths_unioccurrent_lps:[42,2,1,""],is_symmetric:[42,2,1,""],major_index:[42,2,1,""],delta_derivate:[42,2,1,""],is_overlap:[42,2,1,""],reversal:[42,2,1,""],suffix_trie:[42,2,1,""],conjugates_iterator:[42,2,1,""],is_conjugate_with:[42,2,1,""],critical_exponent:[42,2,1,""],nb_factor_occurrences_in:[42,2,1,""],right_special_factors:[42,2,1,""],is_proper_suffix:[42,2,1,""],lyndon_factorization:[42,2,1,""],palindromic_lacunas_study:[42,2,1,""],inversions:[42,2,1,""],is_subword_of:[42,2,1,""],evaluation_dict:[42,2,1,""],standard_factorization:[42,2,1,""],is_proper_prefix:[42,2,1,""],swap_decrease:[42,2,1,""],robinson_schensted:[42,2,1,""],evaluation_sparse:[42,2,1,""],minimal_period:[42,2,1,""],is_suffix:[42,2,1,""],swap_increase:[42,2,1,""],lps_lengths:[42,2,1,""],to_integer_word:[42,2,1,""],exponent:[42,2,1,""],conjugate_position:[42,2,1,""],has_prefix:[42,2,1,""],number_of_inversions:[42,2,1,""],nb_subword_occurrences_in:[42,2,1,""],is_tangent:[42,2,1,""],find:[42,2,1,""],bispecial_factors:[42,2,1,""],evaluation:[42,2,1,""],deg_inv_lex_less:[42,2,1,""],factor_occurrences_in:[42,2,1,""],concatenate:[42,2,1,""],palindromes:[42,2,1,""],number_of_factors:[42,2,1,""],reduced_rauzy_graph:[42,2,1,""],is_factor:[42,2,1,""],evaluation_partition:[42,2,1,""],is_sturmian_factor:[42,2,1,""],rfind:[42,2,1,""],length:[42,2,1,""],suffix_tree:[42,2,1,""],degree:[42,2,1,""],primitive:[42,2,1,""],letters:[42,2,1,""],complete_return_words:[42,2,1,""],is_square:[42,2,1,""],lacunas:[42,2,1,""],is_cube:[42,2,1,""],quasiperiods:[42,2,1,""],return_words_derivate:[42,2,1,""],overlap_partition:[42,2,1,""],foata_bijection:[42,2,1,""],delta_derivate_left:[42,2,1,""],topological_entropy:[42,2,1,""],shifted_shuffle:[42,2,1,""],phi_inv:[42,2,1,""],is_rich:[42,2,1,""],delta_derivate_right:[42,2,1,""],number_of_right_special_factors:[42,2,1,""],delta:[42,2,1,""],abelian_vectors:[42,2,1,""],is_prefix:[42,2,1,""],left_special_factors_iterator:[42,2,1,""],is_cadence:[42,2,1,""],count:[42,2,1,""],longest_common_subword:[42,2,1,""],is_lyndon:[42,2,1,""],good_suffix_table:[42,2,1,""],to_integer_list:[42,2,1,""],sturmian_desubstitute_as_possible:[42,2,1,""],schuetzenberger_involution:[42,2,1,""],longest_common_suffix:[42,2,1,""],deg_lex_less:[42,2,1,""],balance:[42,2,1,""],length_border:[42,2,1,""],is_smooth_prefix:[42,2,1,""],has_period:[42,2,1,""],iterated_left_palindromic_closure:[42,2,1,""],parikh_vector:[42,2,1,""],defect:[42,2,1,""],coerce:[42,2,1,""],number_of_left_special_factors:[42,2,1,""],periods:[42,2,1,""],conjugate:[42,2,1,""],border:[42,2,1,""],last_position_dict:[42,2,1,""],factor_iterator:[42,2,1,""],deg_rev_lex_less:[42,2,1,""],rauzy_graph:[42,2,1,""],right_special_factors_iterator:[42,2,1,""],implicit_suffix_tree:[42,2,1,""],inv_lex_less:[42,2,1,""],abelian_complexity:[42,2,1,""],colored_vector:[42,2,1,""],delta_inv:[42,2,1,""],primitive_length:[42,2,1,""],prefix_function_table:[42,2,1,""],palindromic_closure:[42,2,1,""],phi:[42,2,1,""],to_monoid_element:[42,2,1,""],is_square_free:[42,2,1,""],palindrome_prefixes:[42,2,1,""],is_finite:[42,2,1,""],crochemore_factorization:[42,2,1,""],is_empty:[42,2,1,""],is_quasiperiodic:[42,2,1,""],has_suffix:[42,2,1,""],bispecial_factors_iterator:[42,2,1,""],lps:[42,2,1,""],first_pos_in:[42,2,1,""],order:[42,2,1,""]},"sage.combinat.rigged_configurations.kr_tableaux":{KirillovReshetikhinTableauxElement:[281,3,1,""],KRTableauxRectangle:[281,3,1,""],KRTableauxTypeHorizonal:[281,3,1,""],KRTableauxDTwistedSpin:[281,3,1,""],KRTableauxSpin:[281,3,1,""],KRTableauxSpinElement:[281,3,1,""],KRTableauxBn:[281,3,1,""],KRTableauxTypeBox:[281,3,1,""],KRTableauxTypeVertical:[281,3,1,""],KirillovReshetikhinTableaux:[281,3,1,""]},"sage.combinat.sf.orthotriang":{SymmetricFunctionAlgebra_orthotriang:[188,3,1,""]},"sage.combinat.partition.PartitionsGreatestEQ":{global_options:[306,1,1,""],Element:[306,4,1,""]},"sage.combinat.rigged_configurations.bij_abstract_class.RCToKRTBijectionAbstract":{run:[113,2,1,""],next_state:[113,2,1,""]},"sage.combinat.words.words":{FiniteWords_over_OrderedAlphabet:[59,3,1,""],Words_over_OrderedAlphabet:[59,3,1,""],InfiniteWords_over_OrderedAlphabet:[59,3,1,""],FiniteWords_length_k_over_OrderedAlphabet:[59,3,1,""],Words_over_Alphabet:[59,3,1,""],Words:[59,1,1,""],Words_all:[59,3,1,""],Words_n:[59,3,1,""]},"sage.combinat.permutation.Arrangements":{cardinality:[286,2,1,""]},"sage.combinat.misc":{check_integer_list_constraints:[154,1,1,""],IterableFunctionCall:[154,3,1,""],umbral_operation:[154,1,1,""],DoublyLinkedList:[154,3,1,""]},"sage.combinat.sf.hall_littlewood":{HallLittlewood_q:[83,3,1,""],HallLittlewood_p:[83,3,1,""],HallLittlewood:[83,3,1,""],HallLittlewood_generic:[83,3,1,""],HallLittlewood_qp:[83,3,1,""]},"sage.combinat.lyndon_word":{standard_bracketing:[98,1,1,""],LyndonWords_nk:[98,3,1,""],LyndonWord:[98,3,1,""],LyndonWords_evaluation:[98,3,1,""],LyndonWords:[98,1,1,""],StandardBracketedLyndonWords_nk:[98,3,1,""],StandardBracketedLyndonWords:[98,1,1,""],LyndonWords_class:[98,3,1,""]},"sage.combinat.integer_list.IntegerListsLex":{Element:[269,3,1,""]},"sage.combinat.root_system.pieri_factors":{PieriFactors_finite_type:[225,3,1,""],PieriFactors:[225,3,1,""],PieriFactors_type_C_affine:[225,3,1,""],PieriFactors_type_B_affine:[225,3,1,""],PieriFactors_type_A_affine:[225,3,1,""],PieriFactors_type_D_affine:[225,3,1,""],PieriFactors_type_A:[225,3,1,""],PieriFactors_type_B:[225,3,1,""],PieriFactors_affine_type:[225,3,1,""]},"sage.combinat.skew_tableau.SkewTableau":{outer_size:[122,2,1,""],inner_size:[122,2,1,""],rectify:[122,2,1,""],restrict:[122,2,1,""],inner_shape:[122,2,1,""],shape:[122,2,1,""],conjugate:[122,2,1,""],check:[122,2,1,""],size:[122,2,1,""],pp:[122,2,1,""],weight:[122,2,1,""],is_ribbon:[122,2,1,""],slide:[122,2,1,""],to_word:[122,2,1,""],cells_by_content:[122,2,1,""],is_k_tableau:[122,2,1,""],cells_containing:[122,2,1,""],to_ribbon:[122,2,1,""],evaluation:[122,2,1,""],to_expr:[122,2,1,""],to_permutation:[122,2,1,""],is_semistandard:[122,2,1,""],restriction_outer_shape:[122,2,1,""],entries_by_content:[122,2,1,""],is_standard:[122,2,1,""],bender_knuth_involution:[122,2,1,""],to_tableau:[122,2,1,""],to_word_by_row:[122,2,1,""],standardization:[122,2,1,""],cells:[122,2,1,""],to_chain:[122,2,1,""],filling:[122,2,1,""],restriction_shape:[122,2,1,""],outer_shape:[122,2,1,""],to_word_by_column:[122,2,1,""]},"sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling":{is_non_attacking:[12,2,1,""],weight:[12,2,1,""],coeff:[12,2,1,""],shape:[12,2,1,""],are_attacking:[12,2,1,""],descents:[12,2,1,""],boxes:[12,2,1,""],coeff_integral:[12,2,1,""],coinv:[12,2,1,""],reading_word:[12,2,1,""],inversions:[12,2,1,""],permuted_filling:[12,2,1,""],maj:[12,2,1,""],reading_order:[12,2,1,""],inv:[12,2,1,""],attacking_boxes:[12,2,1,""]},"sage.combinat.crystals":{all:[67,0,0,"-"],kirillov_reshetikhin:[106,0,0,"-"],letters:[290,0,0,"-"],tensor_product:[21,0,0,"-"],generalized_young_walls:[108,0,0,"-"],highest_weight_crystals:[275,0,0,"-"],crystals:[127,0,0,"-"],"__init__":[139,0,0,"-"],affine_factorization:[112,0,0,"-"],affine:[265,0,0,"-"],direct_sum:[191,0,0,"-"],elementary_crystals:[254,0,0,"-"],alcove_path:[132,0,0,"-"],catalog_infinity_crystals:[157,0,0,"-"],infinity_crystals:[296,0,0,"-"],affinization:[9,0,0,"-"],littelmann_path:[11,0,0,"-"],catalog_kirillov_reshetikhin:[123,0,0,"-"],catalog_elementary_crystals:[94,0,0,"-"],catalog:[263,0,0,"-"],fast_crystals:[23,0,0,"-"],polyhedral_realization:[26,0,0,"-"],monomial_crystals:[221,0,0,"-"],kyoto_path_model:[203,0,0,"-"],spins:[50,0,0,"-"]},"sage.combinat.partition_algebra.SetPartitionsSkhalf_k":{cardinality:[169,2,1,""]},"sage.combinat.shuffle.ShuffleProduct":{cardinality:[148,2,1,""]},"sage.combinat.crystals.tensor_product.TensorProductOfCrystals":{global_options:[21,1,1,""]},"sage.combinat.permutation.CyclicPermutationsOfPartition.Element":{check:[286,2,1,""]},"sage.combinat.designs.orthogonal_arrays_build_recursive":{construction_3_3:[195,1,1,""],construction_3_4:[195,1,1,""],construction_3_5:[195,1,1,""],construction_3_6:[195,1,1,""],brouwer_separable_design:[195,1,1,""],thwart_lemma_4_1:[195,1,1,""],construction_q_x:[195,1,1,""],OA_and_oval:[195,1,1,""],three_factor_product:[195,1,1,""],thwart_lemma_3_5:[195,1,1,""]},"sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur":{coproduct_on_basis:[14,2,1,""],Element:[14,3,1,""]},"sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element":{TensorProductOfKirillovReshetikhinTableauxElement:[55,3,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_even.KRTToRCBijectionTypeA2Even":{next_state:[255,2,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KRTableauxDTwistedSpin":{Element:[281,4,1,""]},"sage.combinat.root_system.type_B_affine.CartanType":{dynkin_diagram:[73,2,1,""],ascii_art:[73,2,1,""],PieriFactors:[73,4,1,""]},"sage.combinat.root_system.root_system.RootSystem":{ambient_lattice:[6,2,1,""],is_finite:[6,2,1,""],coambient_space:[6,2,1,""],coroot_space:[6,2,1,""],cartan_matrix:[6,2,1,""],is_irreducible:[6,2,1,""],root_lattice:[6,2,1,""],index_set:[6,2,1,""],coweight_lattice:[6,2,1,""],cartan_type:[6,2,1,""],weight_lattice:[6,2,1,""],dynkin_diagram:[6,2,1,""],ambient_space:[6,2,1,""],weight_space:[6,2,1,""],coweight_space:[6,2,1,""],coroot_lattice:[6,2,1,""],root_poset:[6,2,1,""],root_space:[6,2,1,""]},"sage.combinat.root_system.type_marked.AmbientSpace":{fundamental_weight:[89,2,1,""],simple_root:[89,2,1,""],dimension:[89,2,1,""]},"sage.combinat.k_tableau.WeakTableaux_bounded":{Element:[180,4,1,""]},"sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Immaculate.Element":{bernstein_creation_operator:[140,2,1,""]},"sage.combinat.backtrack.PositiveIntegerSemigroup":{children:[147,2,1,""],roots:[147,2,1,""],one:[147,2,1,""]},"sage.combinat.species.subset_species.SubsetSpeciesStructure":{complement:[273,2,1,""],labels:[273,2,1,""],automorphism_group:[273,2,1,""],canonical_label:[273,2,1,""],transport:[273,2,1,""]},"sage.combinat.subsets_hereditary":{subsets_with_hereditary_property:[37,1,1,""]},"sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Dual":{from_virtual:[310,2,1,""],to_virtual:[310,2,1,""],module_generators:[310,2,1,""],Element:[310,4,1,""]},"sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux.Element":{content:[296,2,1,""],phi:[296,2,1,""],e:[296,2,1,""],weight:[296,2,1,""],string_parameters:[296,2,1,""],f:[296,2,1,""],seg:[296,2,1,""],reduced_form:[296,2,1,""]},"sage.combinat.crystals.tensor_product.ImmutableListWithParent":{set_index:[21,2,1,""],sibling:[21,2,1,""],reversed:[21,2,1,""]},"sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors":{eigenvalue:[82,2,1,""],domain:[82,2,1,""],affine_lift:[82,2,1,""],keys:[82,2,1,""],affine_retract:[82,2,1,""],hecke_parameters:[82,2,1,""],twist:[82,2,1,""],seed:[82,2,1,""],recursion:[82,2,1,""],Y:[82,2,1,""],eigenvalues:[82,2,1,""],cartan_type:[82,2,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_type_D_affine":{maximal_elements_combinatorial:[225,2,1,""],stanley_symm_poly_weight:[225,2,1,""]},"sage.combinat.sloane_functions.A000045":{fib:[56,2,1,""],list:[56,2,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_dual.RCToKRTBijectionTypeA2Dual":{next_state:[181,2,1,""]},"sage.combinat.descent_algebra.DescentAlgebraBases.ParentMethods":{to_symmetric_group_algebra:[305,2,1,""],is_commutative:[305,2,1,""],to_symmetric_group_algebra_on_basis:[305,2,1,""],is_field:[305,2,1,""]},"sage.combinat.debruijn_sequence.DeBruijnSequences":{an_element:[33,2,1,""],cardinality:[33,2,1,""]},"sage.combinat.root_system.coxeter_group":{CoxeterGroup:[170,1,1,""],is_chevie_available:[170,1,1,""],CoxeterGroupAsPermutationGroup:[170,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_CElement":{f0:[106,2,1,""],epsilon0:[106,2,1,""],e0:[106,2,1,""],phi0:[106,2,1,""]},"sage.combinat.words.suffix_trees":{ImplicitSuffixTree:[90,3,1,""],SuffixTrie:[90,3,1,""]},"sage.combinat.parking_functions":{ParkingFunction_class:[128,3,1,""],from_labelled_dyck_word:[128,1,1,""],from_labelling_and_area_sequence:[128,1,1,""],ParkingFunctions:[128,1,1,""],is_a:[128,1,1,""],ParkingFunctions_n:[128,3,1,""],ParkingFunction:[128,1,1,""],ParkingFunctions_all:[128,3,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement":{lusztig_involution:[281,2,1,""],pp:[281,2,1,""],left_split:[281,2,1,""],weight:[281,2,1,""],f:[281,2,1,""],epsilon:[281,2,1,""],right_split:[281,2,1,""],to_kirillov_reshetikhin_crystal:[281,2,1,""],to_classical_highest_weight:[281,2,1,""],phi:[281,2,1,""],to_array:[281,2,1,""],to_tableau:[281,2,1,""],classical_weight:[281,2,1,""],e:[281,2,1,""]},"sage.combinat.combinatorial_algebra":{CombinatorialAlgebra:[214,3,1,""],CombinatorialAlgebraElementOld:[214,3,1,""],TestAlgebra:[214,3,1,""]},"sage.combinat.crystals.affine":{AffineCrystalFromClassicalAndPromotion:[265,3,1,""],AffineCrystalFromClassicalAndPromotionElement:[265,3,1,""],AffineCrystalFromClassicalElement:[265,3,1,""],AffineCrystalFromClassical:[265,3,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables":{homogeneous:[115,3,1,""],supercharacter:[115,3,1,""],monomial:[115,3,1,""],q:[115,2,1,""],elementary:[115,3,1,""],powersum:[115,3,1,""],a_realization:[115,2,1,""],dual:[115,2,1,""],x_basis:[115,3,1,""],coarse_powersum:[115,3,1,""],deformed_coarse_powersum:[115,3,1,""]},"sage.combinat.cluster_algebra_quiver.quiver_mutation_type":{QuiverMutationTypeFactory:[35,3,1,""],QuiverMutationType_Reducible:[35,3,1,""],save_quiver_data:[35,1,1,""],QuiverMutationType_abstract:[35,3,1,""],QuiverMutationType:[35,1,1,""],QuiverMutationType_Irreducible:[35,3,1,""]},"sage.combinat.words.paths.FiniteWordPath_all":{projected_point_iterator:[311,2,1,""],is_simple:[311,2,1,""],projected_path:[311,2,1,""],end_point:[311,2,1,""],is_tangent:[311,2,1,""],tikz_trajectory:[311,2,1,""],plot_projection:[311,2,1,""],points:[311,2,1,""],start_point:[311,2,1,""],is_closed:[311,2,1,""],directive_vector:[311,2,1,""]},"sage.combinat.finite_state_machine":{duplicate_transition_raise_error:[184,1,1,""],wordoftuples_to_tupleofwords:[184,1,1,""],duplicate_transition_add_input:[184,1,1,""],is_FiniteStateMachine:[184,1,1,""],FSMWordSymbol:[184,1,1,""],is_FSMState:[184,1,1,""],is_FSMTransition:[184,1,1,""],tupleofwords_to_wordoftuples:[184,1,1,""],setup_latex_preamble:[184,1,1,""],is_Transducer:[184,1,1,""],FSMState:[184,3,1,""],FSMLetterSymbol:[184,1,1,""],is_Automaton:[184,1,1,""],FSMProcessIterator:[184,3,1,""],startswith:[184,1,1,""],full_group_by:[184,1,1,""],Transducer:[184,3,1,""],duplicate_transition_ignore:[184,1,1,""],Automaton:[184,3,1,""],is_FSMProcessIterator:[184,1,1,""],equal:[184,1,1,""],FSMTransition:[184,3,1,""],FiniteStateMachine:[184,3,1,""]},"sage.combinat.sf.jack.JackPolynomials_generic.Element":{scalar_jack:[309,2,1,""]},"sage.combinat.designs.ext_rep.XTreeProcessor":{parse:[125,2,1,""]},"sage.combinat.sf.orthotriang.SymmetricFunctionAlgebra_orthotriang":{Element:[188,3,1,""]},"sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial.Element":{to_symmetric_function:[115,2,1,""],expand:[115,2,1,""]},"sage.combinat.set_partition.SetPartitions_setn":{cardinality:[229,2,1,""]},"sage.combinat.tuple":{Tuples_sk:[31,3,1,""],Tuples:[31,1,1,""],UnorderedTuples_sk:[31,3,1,""],UnorderedTuples:[31,1,1,""]},"sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomials":{cardinality:[221,2,1,""]},"sage.combinat.sf.homogeneous":{SymmetricFunctionAlgebra_homogeneous:[49,3,1,""]},"sage.combinat.ncsym.bases.NCSymOrNCSymDualBases.ParentMethods":{duality_pairing:[297,2,1,""],one_basis:[297,2,1,""],counit_on_basis:[297,2,1,""],duality_pairing_matrix:[297,2,1,""]},"sage.combinat.binary_tree.BinaryTrees_all":{unlabelled_trees:[285,2,1,""],labelled_trees:[285,2,1,""],Element:[285,4,1,""]},"sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous.Element":{omega:[49,2,1,""],expand:[49,2,1,""],omega_involution:[49,2,1,""]},"sage.combinat.knutson_tao_puzzles.NablaPiece":{half_turn_rotation:[52,2,1,""],edges:[52,2,1,""],clockwise_rotation:[52,2,1,""]},"sage.combinat.rigged_configurations.rigged_configuration_element.KRRCTypeA2DualElement":{cc:[220,2,1,""],epsilon:[220,2,1,""],phi:[220,2,1,""],cocharge:[220,2,1,""]},"sage.combinat.similarity_class_type.SimilarityClassTypes":{sum:[222,2,1,""],Element:[222,4,1,""],size:[222,2,1,""]},"sage.combinat.permutation.Permutations_mset.Element":{check:[286,2,1,""]},"sage.combinat.necklace.Necklaces_evaluation":{content:[187,2,1,""],cardinality:[187,2,1,""],e:[187,2,1,""]},"sage.combinat.designs.ext_rep":{open_extrep_file:[125,1,1,""],open_extrep_url:[125,1,1,""],XTree:[125,3,1,""],designs_from_XML:[125,1,1,""],dump_to_tmpfile:[125,1,1,""],designs_from_XML_url:[125,1,1,""],check_dtrs_protocols:[125,1,1,""],XTreeProcessor:[125,3,1,""]},"sage.combinat.dyck_word.CompleteDyckWords_all.height_poset":{le:[256,2,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_dual.KRTToRCBijectionTypeA2Dual":{next_state:[181,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion":{Element:[106,4,1,""]},"sage.combinat.finite_state_machine.Automaton":{minimization:[184,2,1,""],process:[184,2,1,""],determinisation:[184,2,1,""],with_output:[184,2,1,""],intersection:[184,2,1,""],cartesian_product:[184,2,1,""]},"sage.combinat.rigged_configurations.rc_crystal":{CrystalOfNonSimplyLacedRC:[264,3,1,""],CrystalOfRiggedConfigurations:[264,3,1,""]},"sage.combinat.sf.sfa.SymmetricFunctionsBases.ElementMethods":{degree_zero_coefficient:[68,2,1,""],degree_negation:[68,2,1,""]},"sage.combinat.rigged_configurations.bij_type_A2_even.RCToKRTBijectionTypeA2Even":{next_state:[255,2,1,""]},"sage.combinat.vector_partition":{VectorPartitions:[282,3,1,""],find_min:[282,1,1,""],IntegerVectorsIterator:[282,1,1,""],VectorPartition:[282,3,1,""]},"sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods":{an_element:[298,2,1,""],coproduct:[298,2,1,""],transition_matrix:[298,2,1,""],degree_on_basis:[298,2,1,""],one_basis:[298,2,1,""],antipode:[298,2,1,""],counit:[298,2,1,""]},"sage.combinat.tableau_tuple.StandardTableauTuples":{an_element:[301,2,1,""],level_one_parent_class:[301,4,1,""],shape:[301,2,1,""],Element:[301,4,1,""]},"sage.combinat.root_system.type_C_affine":{CartanType:[44,3,1,""]},"sage.combinat.crystals.infinity_crystals":{InfinityCrystalOfTableaux:[296,3,1,""],InfinityCrystalOfTableauxTypeD:[296,3,1,""]},"sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatternsTopRow":{Tokuyama_formula:[58,2,1,""],random_element:[58,2,1,""],top_row:[58,2,1,""]},"sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver":{principal_extension:[217,2,1,""],show:[217,2,1,""],digraph:[217,2,1,""],reorient:[217,2,1,""],mutation_sequence:[217,2,1,""],is_mutation_finite:[217,2,1,""],plot:[217,2,1,""],interact:[217,2,1,""],mutate:[217,2,1,""],is_finite:[217,2,1,""],b_matrix:[217,2,1,""],exchangeable_part:[217,2,1,""],mutation_class_iter:[217,2,1,""],canonical_label:[217,2,1,""],mutation_type:[217,2,1,""],save_image:[217,2,1,""],m:[217,2,1,""],mutation_class:[217,2,1,""],n:[217,2,1,""],is_acyclic:[217,2,1,""],qmu_save:[217,2,1,""],is_bipartite:[217,2,1,""]},"sage.combinat.words.words.Words_over_OrderedAlphabet":{cmp_letters:[59,2,1,""],iterate_by_length:[59,2,1,""],random_element:[59,2,1,""],iter_morphisms:[59,2,1,""]},"sage.combinat.set_partition_ordered":{OrderedSetPartitions_scomp:[242,3,1,""],OrderedSetPartitions_sn:[242,3,1,""],OrderedSetPartitions_s:[242,3,1,""],SplitNK:[242,3,1,""],OrderedSetPartition:[242,3,1,""],OrderedSetPartitions:[242,3,1,""]},"sage.combinat.integer_vector_weighted":{WeightedIntegerVectors_nweight:[114,3,1,""],WeightedIntegerVectors:[114,1,1,""],WeightedIntegerVectors_all:[114,3,1,""]},"sage.combinat.partition.Partition":{k_conjugate:[306,2,1,""],hooks:[306,2,1,""],inside_corners_residue:[306,2,1,""],to_dyck_word:[306,2,1,""],aut:[306,2,1,""],inside_corners:[306,2,1,""],down_list:[306,2,1,""],leg_length:[306,2,1,""],hook_lengths:[306,2,1,""],k_atom:[306,2,1,""],k_skew:[306,2,1,""],upper_hook:[306,2,1,""],outer_rim:[306,2,1,""],corners_residue:[306,2,1,""],from_kbounded_to_grassmannian:[306,2,1,""],level:[306,2,1,""],get_part:[306,2,1,""],larger_lex:[306,2,1,""],to_list:[306,2,1,""],standard_tableaux:[306,2,1,""],k_interior:[306,2,1,""],jacobi_trudi:[306,2,1,""],hook_product:[306,2,1,""],young_subgroup_generators:[306,2,1,""],conjugacy_class_size:[306,2,1,""],sign:[306,2,1,""],lower_hook:[306,2,1,""],is_core:[306,2,1,""],frobenius_rank:[306,2,1,""],residue:[306,2,1,""],from_kbounded_to_reduced_word:[306,2,1,""],dominates:[306,2,1,""],arm_lengths:[306,2,1,""],plancherel_measure:[306,2,1,""],content:[306,2,1,""],cell_poset:[306,2,1,""],hook_length:[306,2,1,""],evaluation:[306,2,1,""],frobenius_coordinates:[306,2,1,""],core:[306,2,1,""],power:[306,2,1,""],lower_hook_lengths:[306,2,1,""],add_cell:[306,2,1,""],removable_cells_residue:[306,2,1,""],beta_numbers:[306,2,1,""],upper_hook_lengths:[306,2,1,""],outside_corners:[306,2,1,""],arm_cells:[306,2,1,""],ferrers_diagram:[306,2,1,""],to_core:[306,2,1,""],length:[306,2,1,""],dual_equivalence_graph:[306,2,1,""],garnir_tableau:[306,2,1,""],arms_legs_coeff:[306,2,1,""],quotient:[306,2,1,""],k_boundary:[306,2,1,""],down:[306,2,1,""],add_horizontal_border_strip:[306,2,1,""],generalized_pochhammer_symbol:[306,2,1,""],young_subgroup:[306,2,1,""],size:[306,2,1,""],pp:[306,2,1,""],contains:[306,2,1,""],remove_cell:[306,2,1,""],t_completion:[306,2,1,""],next:[306,2,1,""],hook_polynomial:[306,2,1,""],arm_length:[306,2,1,""],addable_cells_residue:[306,2,1,""],k_irreducible:[306,2,1,""],crank:[306,2,1,""],atom:[306,2,1,""],k_split:[306,2,1,""],add_vertical_border_strip:[306,2,1,""],reading_tableau:[306,2,1,""],cells:[306,2,1,""],weighted_size:[306,2,1,""],up:[306,2,1,""],removable_cells:[306,2,1,""],outside_corners_residue:[306,2,1,""],rim:[306,2,1,""],conjugate:[306,2,1,""],to_exp:[306,2,1,""],addable_cells:[306,2,1,""],remove_horizontal_border_strip:[306,2,1,""],corners:[306,2,1,""],attacking_pairs:[306,2,1,""],leg_cells:[306,2,1,""],top_garnir_tableau:[306,2,1,""],to_exp_dict:[306,2,1,""],up_list:[306,2,1,""],is_empty:[306,2,1,""],zero_one_sequence:[306,2,1,""],character_polynomial:[306,2,1,""],leg_lengths:[306,2,1,""],initial_tableau:[306,2,1,""],outline:[306,2,1,""],dominated_partitions:[306,2,1,""],components:[306,2,1,""],centralizer_size:[306,2,1,""],suter_diagonal_slide:[306,2,1,""],dimension:[306,2,1,""]},"sage.combinat.root_system.type_folded":{CartanTypeFolded:[70,3,1,""]},"sage.combinat.designs.database":{OA_9_1078:[268,1,1,""],OA_9_120:[268,1,1,""],DM_33_6_1:[268,1,1,""],DM_55_7_1:[268,1,1,""],DM_12_6_1:[268,1,1,""],OA_16_208:[268,1,1,""],MOLS_10_2:[268,1,1,""],cyclic_shift:[268,1,1,""],OA_11_160:[268,1,1,""],OA_14_524:[268,1,1,""],DM_51_6_1:[268,1,1,""],MOLS_18_3:[268,1,1,""],QDM_33_6_1_1_1:[268,1,1,""],QDM_54_7_1_1_8:[268,1,1,""],DM_273_17_1:[268,1,1,""],OA_16_176:[268,1,1,""],OA_11_640:[268,1,1,""],OA_8_76:[268,1,1,""],OA_8_69:[268,1,1,""],OA_7_66:[268,1,1,""],MOLS_12_5:[268,1,1,""],OA_17_560:[268,1,1,""],OA_9_1612:[268,1,1,""],OA_10_469:[268,1,1,""],OA_7_68:[268,1,1,""],OA_15_224:[268,1,1,""],DM_36_9_1:[268,1,1,""],OA_12_522:[268,1,1,""],QDM_35_7_1_1_7:[268,1,1,""],OA_10_520:[268,1,1,""],DM_28_6_1:[268,1,1,""],DM_48_9_1:[268,1,1,""],DM_57_8_1:[268,1,1,""],OA_520_plus_x:[268,1,1,""],DM_44_6_1:[268,1,1,""],OA_9_135:[268,1,1,""],QDM_25_6_1_1_5:[268,1,1,""],DM_75_8_1:[268,1,1,""],QDM_19_6_1_1_1:[268,1,1,""],OA_11_80:[268,1,1,""],QDM_45_7_1_1_9:[268,1,1,""],DM_60_6_1:[268,1,1,""],QDM_21_6_1_1_5:[268,1,1,""],QDM_21_5_1_1_1:[268,1,1,""],RBIBD_120_8_1:[268,1,1,""],OA_11_185:[268,1,1,""],QDM_57_9_1_1_8:[268,1,1,""],OA_7_74:[268,1,1,""],QDM_37_6_1_1_1:[268,1,1,""],OA_10_205:[268,1,1,""],OA_7_18:[268,1,1,""],MOLS_15_4:[268,1,1,""],DM_35_6_1:[268,1,1,""],DM_52_6_1:[268,1,1,""],OA_10_1620:[268,1,1,""],DM_39_6_1:[268,1,1,""],f:[268,1,1,""],OA_25_1262:[268,1,1,""],MOLS_14_4:[268,1,1,""],OA_15_896:[268,1,1,""],DM_993_32_1:[268,1,1,""],DM_56_8_1:[268,1,1,""],OA_20_544:[268,1,1,""],DM_21_6_1:[268,1,1,""],OA_20_352:[268,1,1,""],OA_9_40:[268,1,1,""],DM_45_7_1:[268,1,1,""],OA_11_254:[268,1,1,""],OA_10_796:[268,1,1,""],OA_20_416:[268,1,1,""],OA_15_112:[268,1,1,""],DM_24_8_1:[268,1,1,""]},"sage.combinat.ncsym.bases.MultiplicativeNCSymBases":{super_categories:[297,2,1,""],ElementMethods:[297,3,1,""],ParentMethods:[297,3,1,""]},"sage.combinat.skew_tableau":{StandardSkewTableaux_shape:[122,3,1,""],SkewTableau_class:[122,3,1,""],SemistandardSkewTableaux_shape_weight:[122,3,1,""],StandardSkewTableaux:[122,3,1,""],SemistandardSkewTableaux_all:[122,3,1,""],SemistandardSkewTableaux_size_weight:[122,3,1,""],SkewTableau:[122,3,1,""],StandardSkewTableaux_size:[122,3,1,""],SemistandardSkewTableaux_size:[122,3,1,""],SemistandardSkewTableaux_shape:[122,3,1,""],SkewTableaux:[122,3,1,""],SemistandardSkewTableaux:[122,3,1,""],StandardSkewTableaux_all:[122,3,1,""]},"sage.combinat.designs.difference_family":{difference_family:[247,1,1,""],twin_prime_powers_difference_set:[247,1,1,""],df_q_6_1:[247,1,1,""],one_cyclic_tiling:[247,1,1,""],is_difference_family:[247,1,1,""],radical_difference_family:[247,1,1,""],group_law:[247,1,1,""],one_radical_difference_family:[247,1,1,""],block_stabilizer:[247,1,1,""],singer_difference_set:[247,1,1,""],radical_difference_set:[247,1,1,""]},"sage.combinat.combinat.FilteredCombinatorialClass":{cardinality:[171,2,1,""]},"sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods":{smaller:[143,2,1,""],norm_squared:[143,2,1,""],to_dominant_chamber:[143,2,1,""],orbit:[143,2,1,""],height:[143,2,1,""],to_ambient:[143,2,1,""],scalar:[143,2,1,""],first_descent:[143,2,1,""],reduced_word:[143,2,1,""],simple_reflections:[143,2,1,""],has_descent:[143,2,1,""],descents:[143,2,1,""],weyl_stabilizer:[143,2,1,""],is_dominant:[143,2,1,""],pred:[143,2,1,""],extraspecial_pair:[143,2,1,""],symmetric_form:[143,2,1,""],weyl_action:[143,2,1,""],to_simple_root:[143,2,1,""],greater:[143,2,1,""],associated_coroot:[143,2,1,""],translation:[143,2,1,""],is_imaginary_root:[143,2,1,""],reflection:[143,2,1,""],is_long_root:[143,2,1,""],to_classical:[143,2,1,""],level:[143,2,1,""],is_real_root:[143,2,1,""],associated_reflection:[143,2,1,""],succ:[143,2,1,""],simple_reflection:[143,2,1,""],is_short_root:[143,2,1,""],is_dominant_weight:[143,2,1,""],is_parabolic_root:[143,2,1,""],to_dual_type_cospace:[143,2,1,""]},"sage.combinat.root_system.type_E.CartanType":{dynkin_diagram:[236,2,1,""],ascii_art:[236,2,1,""],AmbientSpace:[236,4,1,""],coxeter_number:[236,2,1,""],dual_coxeter_number:[236,2,1,""]},"sage.combinat.species.linear_order_species":{LinearOrderSpecies_class:[284,4,1,""],LinearOrderSpeciesStructure:[284,3,1,""],LinearOrderSpecies:[284,3,1,""]},"sage.combinat.skew_tableau.SemistandardSkewTableaux_size_weight":{cardinality:[122,2,1,""]},"sage.combinat.partition.PartitionsInBox":{list:[306,2,1,""]},"sage.combinat.non_decreasing_parking_function":{is_a:[2,1,1,""],NonDecreasingParkingFunction:[2,3,1,""],NonDecreasingParkingFunctions:[2,1,1,""],NonDecreasingParkingFunctions_all:[2,3,1,""],NonDecreasingParkingFunctions_n:[2,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn":{classical_decomposition:[106,2,1,""],highest_weight_dict:[106,2,1,""],similarity_factor:[106,2,1,""],from_ambient_crystal:[106,2,1,""],Element:[106,4,1,""],ambient_crystal:[106,2,1,""],ambient_highest_weight_dict:[106,2,1,""],to_ambient_crystal:[106,2,1,""]},"sage.combinat.core.Cores_size":{list:[99,2,1,""],from_partition:[99,2,1,""],Element:[99,4,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical":{classical_decomposition:[106,2,1,""],promotion_on_highest_weight_vectors:[106,2,1,""],dynkin_diagram_automorphism:[106,2,1,""],from_highest_weight_vector_to_pm_diagram:[106,2,1,""],promotion_inverse:[106,2,1,""],from_pm_diagram_to_highest_weight_vector:[106,2,1,""],promotion:[106,2,1,""]},"sage.combinat.root_system.fundamental_group.FundamentalGroupElement":{act_on_affine_lattice:[313,2,1,""],inverse:[313,2,1,""],act_on_affine_weyl:[313,2,1,""],value:[313,2,1,""]},"sage.combinat.sf.new_kschur.KBoundedSubspaceBases":{super_categories:[298,2,1,""],ElementMethods:[298,3,1,""],ParentMethods:[298,3,1,""]},"sage.combinat.sf.multiplicative":{SymmetricFunctionAlgebra_multiplicative:[116,3,1,""]},"sage.combinat.words.word_char.WordDatatype_char":{has_prefix:[271,2,1,""],is_empty:[271,2,1,""],is_square:[271,2,1,""],letters:[271,2,1,""],length:[271,2,1,""]},"sage.combinat.partition.RestrictedPartitions_nsk":{list:[306,2,1,""],cardinality:[306,2,1,""],global_options:[306,1,1,""],Element:[306,4,1,""]},"sage.combinat.permutation.StandardPermutations_avoiding_21":{cardinality:[286,2,1,""]},"sage.combinat.partition_algebra.SetPartitionsSk_k":{cardinality:[169,2,1,""]},"sage.combinat.root_system.coxeter_group.CoxeterGroupAsPermutationGroup":{Element:[170,3,1,""],index_set:[170,2,1,""],reflection:[170,2,1,""],simple_reflection:[170,2,1,""]},"sage.combinat.baxter_permutations":{BaxterPermutations:[18,3,1,""],BaxterPermutations_size:[18,3,1,""],BaxterPermutations_all:[18,3,1,""]},"sage.combinat.skew_tableau.SkewTableaux":{from_shape_and_word:[122,2,1,""],from_expr:[122,2,1,""],global_options:[122,1,1,""],Element:[122,4,1,""]},"sage.combinat.interval_posets.TamariIntervalPoset":{lower_dyck_word:[185,2,1,""],insertion:[185,2,1,""],maximal_chain_binary_trees:[185,2,1,""],decreasing_parent:[185,2,1,""],is_final_interval:[185,2,1,""],upper_contains_interval:[185,2,1,""],is_new:[185,2,1,""],decreasing_children:[185,2,1,""],ge:[185,2,1,""],gt:[185,2,1,""],maximal_chain_dyck_words:[185,2,1,""],min_linear_extension:[185,2,1,""],lower_contains_interval:[185,2,1,""],contains_dyck_word:[185,2,1,""],size:[185,2,1,""],lower_binary_tree:[185,2,1,""],le:[185,2,1,""],max_linear_extension:[185,2,1,""],tamari_inversions_iter:[185,2,1,""],number_of_tamari_inversions:[185,2,1,""],increasing_roots:[185,2,1,""],lt:[185,2,1,""],maximal_chain_tamari_intervals:[185,2,1,""],upper_dyck_word:[185,2,1,""],decreasing_cover_relations:[185,2,1,""],set_latex_options:[185,2,1,""],increasing_cover_relations:[185,2,1,""],increasing_parent:[185,2,1,""],sub_poset:[185,2,1,""],tamari_inversions:[185,2,1,""],upper_binary_tree:[185,2,1,""],contains_binary_tree:[185,2,1,""],interval_cardinality:[185,2,1,""],contains_interval:[185,2,1,""],linear_extensions:[185,2,1,""],decreasing_roots:[185,2,1,""],complement:[185,2,1,""],intersection:[185,2,1,""],poset:[185,2,1,""],latex_options:[185,2,1,""],final_forest:[185,2,1,""],binary_trees:[185,2,1,""],increasing_children:[185,2,1,""],is_initial_interval:[185,2,1,""],initial_forest:[185,2,1,""],lower_contained_intervals:[185,2,1,""],dyck_words:[185,2,1,""],is_linear_extension:[185,2,1,""]},"sage.combinat.permutation.StandardPermutations_descents":{cardinality:[286,2,1,""],last:[286,2,1,""],first:[286,2,1,""]},"sage.combinat.alternating_sign_matrix.AlternatingSignMatrices":{from_corner_sum:[212,2,1,""],cover_relations:[212,2,1,""],lattice:[212,2,1,""],gyration_orbits:[212,2,1,""],from_monotone_triangle:[212,2,1,""],Element:[212,4,1,""],from_height_function:[212,2,1,""],from_contre_tableau:[212,2,1,""],gyration_orbit_sizes:[212,2,1,""],matrix_space:[212,2,1,""],cardinality:[212,2,1,""],size:[212,2,1,""]},"sage.combinat.derangements.Derangements":{cardinality:[178,2,1,""],random_element:[178,2,1,""],Element:[178,4,1,""]},"sage.combinat.dyck_word.DyckWords":{min_from_heights:[256,2,1,""],global_options:[256,1,1,""],from_heights:[256,2,1,""],Element:[256,4,1,""]},"sage.combinat.species.misc":{change_support:[54,1,1,""],accept_size:[54,1,1,""]},"sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation":{straighten_word:[82,2,1,""],domain:[82,2,1,""],Y_lambdacheck:[82,2,1,""],parameters:[82,2,1,""],Ti_inverse_on_basis:[82,2,1,""],Tw:[82,2,1,""],Tw_inverse:[82,2,1,""],on_basis:[82,2,1,""],Ti_on_basis:[82,2,1,""],Y:[82,2,1,""],cartan_type:[82,2,1,""],Y_eigenvectors:[82,2,1,""]},"sage.combinat.permutation.StandardPermutations_n.Element":{inverse:[286,2,1,""],has_right_descent:[286,2,1,""],has_left_descent:[286,2,1,""]},"sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints":{permutation_group:[317,2,1,""],an_element:[317,2,1,""],orbit:[317,2,1,""],Element:[317,3,1,""],lift:[317,2,1,""],ambient:[317,2,1,""],retract:[317,2,1,""],is_canonical:[317,2,1,""],children:[317,2,1,""],roots:[317,2,1,""]},"sage.combinat.partition_tuple.PartitionTuple":{young_subgroup_generators:[293,2,1,""],up:[293,2,1,""],down:[293,2,1,""],conjugate:[293,2,1,""],young_subgroup:[293,2,1,""],hook_length:[293,2,1,""],up_list:[293,2,1,""],pp:[293,2,1,""],dominates:[293,2,1,""],contains:[293,2,1,""],remove_cell:[293,2,1,""],content:[293,2,1,""],size:[293,2,1,""],top_garnir_tableau:[293,2,1,""],standard_tableaux:[293,2,1,""],down_list:[293,2,1,""],arm_length:[293,2,1,""],leg_length:[293,2,1,""],to_exp:[293,2,1,""],add_cell:[293,2,1,""],addable_cells:[293,2,1,""],Element:[293,4,1,""],diagram:[293,2,1,""],outside_corners:[293,2,1,""],initial_tableau:[293,2,1,""],level:[293,2,1,""],ferrers_diagram:[293,2,1,""],corners:[293,2,1,""],cells:[293,2,1,""],to_list:[293,2,1,""],removable_cells:[293,2,1,""],components:[293,2,1,""],garnir_tableau:[293,2,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_box":{classical_decomposition:[106,2,1,""],highest_weight_dict:[106,2,1,""],similarity_factor:[106,2,1,""],from_ambient_crystal:[106,2,1,""],Element:[106,4,1,""],ambient_crystal:[106,2,1,""],ambient_highest_weight_dict:[106,2,1,""],to_ambient_crystal:[106,2,1,""]},"sage.combinat.species.stream.Stream_class":{map:[182,2,1,""],stretch:[182,2,1,""],data:[182,2,1,""],set_gen:[182,2,1,""],number_computed:[182,2,1,""],is_constant:[182,2,1,""]},"sage.combinat.rooted_tree.RootedTree":{sort_key:[48,2,1,""],graft_on_root:[48,2,1,""],normalize:[48,2,1,""],graft_list:[48,2,1,""],is_empty:[48,2,1,""]},"sage.combinat.combination":{Combinations_setk:[15,3,1,""],ChooseNK:[15,3,1,""],Combinations_mset:[15,3,1,""],Combinations_msetk:[15,3,1,""],Combinations:[15,1,1,""],Combinations_set:[15,3,1,""]},"sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle":{from_kirillov_reshetikhin_crystal:[281,2,1,""]},"sage.combinat.crystals.elementary_crystals.TCrystal":{weight_lattice_realization:[254,2,1,""],cardinality:[254,2,1,""],Element:[254,3,1,""]},"sage.combinat.combinat":{permutations:[171,1,1,""],number_of_unordered_tuples:[171,1,1,""],fibonacci:[171,1,1,""],CombinatorialClass:[171,3,1,""],cyclic_permutations_iterator:[171,1,1,""],unshuffle_iterator:[171,1,1,""],unordered_tuples:[171,1,1,""],tuples:[171,1,1,""],lucas_number1:[171,1,1,""],lucas_number2:[171,1,1,""],Permutations_CC:[171,3,1,""],bell_number:[171,1,1,""],euler_number:[171,1,1,""],fibonacci_sequence:[171,1,1,""],bell_polynomial:[171,1,1,""],MapCombinatorialClass:[171,3,1,""],CombinatorialElement:[171,3,1,""],FilteredCombinatorialClass:[171,3,1,""],cyclic_permutations:[171,1,1,""],number_of_tuples:[171,1,1,""],bernoulli_polynomial:[171,1,1,""],fibonacci_xrange:[171,1,1,""],CombinatorialObject:[171,3,1,""],UnionCombinatorialClass:[171,3,1,""],InfiniteAbstractCombinatorialClass:[171,3,1,""],catalan_number:[171,1,1,""],stirling_number1:[171,1,1,""],stirling_number2:[171,1,1,""]},"sage.combinat.ncsym.bases.NCSymOrNCSymDualBases":{super_categories:[297,2,1,""],ElementMethods:[297,3,1,""],ParentMethods:[297,3,1,""]},"sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2":{classical_decomposition:[106,2,1,""],highest_weight_dict:[106,2,1,""],from_ambient_crystal:[106,2,1,""],to_ambient_crystal:[106,2,1,""],ambient_highest_weight_dict:[106,2,1,""],ambient_crystal:[106,2,1,""],ambient_dict_pm_diagrams:[106,2,1,""],Element:[106,4,1,""]},"sage.combinat.q_bernoulli":{q_bernoulli:[179,1,1,""]},"sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization.Element":{epsilon:[26,2,1,""],phi:[26,2,1,""],e:[26,2,1,""],truncate:[26,2,1,""],f:[26,2,1,""]},"sage.combinat.species.characteristic_species.CharacteristicSpeciesStructure":{canonical_label:[72,2,1,""],automorphism_group:[72,2,1,""],transport:[72,2,1,""]},"sage.combinat.sf.elementary":{SymmetricFunctionAlgebra_elementary:[249,3,1,""]},"sage.combinat.crystals.elementary_crystals.RCrystal.Element":{epsilon:[254,2,1,""],phi:[254,2,1,""],weight:[254,2,1,""]},"sage.combinat.ribbon_tableau.RibbonTableau":{length:[117,2,1,""],to_word:[117,2,1,""]},"sage.combinat.root_system.type_I.CartanType":{coxeter_diagram:[232,2,1,""],coxeter_number:[232,2,1,""],index_set:[232,2,1,""],rank:[232,2,1,""]},"sage.combinat.tableau.Tableaux_all":{an_element:[7,2,1,""]},"sage.combinat.tableau.SemistandardTableaux_shape_weight":{cardinality:[7,2,1,""],list:[7,2,1,""]},"sage.combinat.root_system.type_relabel.CartanType":{dynkin_diagram:[167,2,1,""],ascii_art:[167,2,1,""],index_set:[167,2,1,""],dual:[167,2,1,""],type:[167,2,1,""]},"sage.combinat.combinatorial_map.CombinatorialMap":{order:[20,2,1,""],unbounded_map:[20,2,1,""],name:[20,2,1,""]},"sage.combinat.integer_vector.IntegerVectors_nk":{list:[130,2,1,""],rank:[130,2,1,""]},"sage.combinat.designs.covering_design.CoveringDesign":{is_covering:[173,2,1,""],creator:[173,2,1,""],timestamp:[173,2,1,""],k:[173,2,1,""],method:[173,2,1,""],incidence_structure:[173,2,1,""],t:[173,2,1,""],v:[173,2,1,""],low_bd:[173,2,1,""],size:[173,2,1,""]},"sage.combinat.combinat.InfiniteAbstractCombinatorialClass":{cardinality:[171,2,1,""],list:[171,2,1,""]},"sage.combinat.root_system.type_E_affine.CartanType":{dynkin_diagram:[252,2,1,""],ascii_art:[252,2,1,""]},"sage.combinat.root_system.type_relabel":{CartanType:[167,3,1,""],CartanType_finite:[167,3,1,""],CartanType_affine:[167,3,1,""],AmbientSpace:[167,3,1,""]},"sage.combinat.crystals.letters.Crystal_of_letters_type_D_element":{epsilon:[290,2,1,""],phi:[290,2,1,""],e:[290,2,1,""],weight:[290,2,1,""],f:[290,2,1,""]},"sage.combinat.root_system.fundamental_group.FundamentalGroupGL":{product:[313,2,1,""],family:[313,2,1,""],an_element:[313,2,1,""],one:[313,2,1,""],dual_node:[313,2,1,""],some_elements:[313,2,1,""],action:[313,2,1,""],reduced_word:[313,2,1,""],Element:[313,4,1,""],group_generators:[313,2,1,""]},"sage.combinat.partition.Partitions_parts_in":{cardinality:[306,2,1,""],last:[306,2,1,""],first:[306,2,1,""]},"sage.combinat.posets":{all:[245,0,0,"-"],hasse_diagram:[304,0,0,"-"],incidence_algebras:[193,0,0,"-"],linear_extensions:[198,0,0,"-"],elements:[39,0,0,"-"],"__init__":[28,0,0,"-"],lattices:[29,0,0,"-"],posets:[163,0,0,"-"],poset_examples:[189,0,0,"-"]},"sage.combinat.k_tableau.WeakTableaux_abstract":{representation:[180,2,1,""],shape:[180,2,1,""],size:[180,2,1,""]},"sage.combinat.crystals.fast_crystals.FastCrystal":{digraph:[23,2,1,""],cmp_elements:[23,2,1,""],list:[23,2,1,""],Element:[23,3,1,""]},"sage.combinat.rigged_configurations.rigged_configuration_element.RCHWNonSimplyLacedElement":{check:[220,2,1,""],weight:[220,2,1,""],f:[220,2,1,""]},"sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_n":{cardinality:[2,2,1,""]},"sage.combinat.tuple.UnorderedTuples_sk":{cardinality:[31,2,1,""],list:[31,2,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_type_A":{maximal_elements_combinatorial:[225,2,1,""],stanley_symm_poly_weight:[225,2,1,""]},"sage.combinat.partition.Partitions_ending":{first:[306,2,1,""],next:[306,2,1,""]},"sage.combinat.root_system.pieri_factors.PieriFactors_type_B":{maximal_elements_combinatorial:[225,2,1,""],stanley_symm_poly_weight:[225,2,1,""]},"sage.combinat.ordered_tree.OrderedTrees_all":{unlabelled_trees:[30,2,1,""],labelled_trees:[30,2,1,""],Element:[30,4,1,""]},"sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0Pv":{simple_reflections:[241,2,1,""],from_dual_translation:[241,2,1,""],from_dual_classical_weyl:[241,2,1,""]},"sage.combinat.derangements.Derangement":{to_permutation:[178,2,1,""]},"sage.combinat.affine_permutation.AffinePermutationTypeD":{has_right_descent:[287,2,1,""],apply_simple_reflection_left:[287,2,1,""],has_left_descent:[287,2,1,""],check:[287,2,1,""],apply_simple_reflection_right:[287,2,1,""]},"sage.combinat.root_system.type_reducible.CartanType":{component_types:[302,2,1,""],cartan_matrix:[302,2,1,""],is_irreducible:[302,2,1,""],is_finite:[302,2,1,""],index_set:[302,2,1,""],rank:[302,2,1,""],dynkin_diagram:[302,2,1,""],ascii_art:[302,2,1,""],dual:[302,2,1,""],is_affine:[302,2,1,""],type:[302,2,1,""],AmbientSpace:[302,4,1,""]},"sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial":{antipode_by_coercion:[322,2,1,""],from_polynomial_exp:[322,2,1,""],from_polynomial:[322,2,1,""],Element:[322,3,1,""]}},titleterms:{represent:[75,101,82,121,125,250],code:[250,183,201,184,102],orthogon:[144,188,195,251,261],untwist:[44,73,45,204,194,227,252],datum:250,llt:4,uppuluri:244,implement:[62,253,146],cython:[53,257,57],qsym:165,pentamino:40,transduc:[190,184],graph:[276,158,42,253,200,288],young:108,quasi:38,util:[267,64],jack:309,word:[36,158,256,42,307,5,98,59,60,219,311,136,231,312,271,34,192,150],mpz:53,tri:90,solver:[158,40],list:[175,253,158,64,29,163,269],iter:[148,36,253],vector:[114,317,130,282],small:268,dimens:276,speci:[72,91,1,230,246,253,196,161,270,284,318,97,159,66,149,294,107,273,71],direct:[191,200],sign:[126,212],fold:70,design:[268,57,278,80,266,110,125,88,215,173,17],ribbon:[224,117,8],index:[267,129,64],what:286,neg:[130,315],sum:[258,191,196,71],biject:[113,85,255,181,197,103,104,105,10,292,109,86],find:251,access:184,steiner:129,intersect:300,"new":253,symmetr:[12,213,75,77,4,156,309,174,14,249,258,260,27,188,38,280,116,283,115,165,49,322,140,61,68,226],method:[286,137,184,208,29,198,146,163,190,88,173],hereditari:37,deriv:184,whose:111,gener:[253,158,77,280,78,164,201,190,108,206,315],satisfi:[37,111],subword:151,path:[311,200,203,11,132],strong:180,modifi:[221,184],interpret:[213,19,3,25,97,202,219,124,79,110,245,67,274],hass:304,search:146,convers:184,polyhedr:26,action:[87,317],introductori:[270,267,139,250,64],automaton:184,isomorph:[253,146],schur:[298,14],via:133,modul:[175,64,141],deprec:[63,177],famili:[247,250,95],unit:93,plot:276,two:23,automata:184,tsetlin:58,type:[44,73,232,233,45,235,236,237,238,239,240,167,13,250,227,89,252,112,255,259,181,103,104,105,194,109,35,276,85,32,197,120,296,204,302,70,234,222,291],commut:[38,226,115,140,27],relat:[267,250,158,64],finit:[253,42,222,184,208,29,312,145,163,190,150],visual:276,rbibd:80,logarithm:41,pieri:225,work:165,tableautupl:301,root:[155,73,3,233,45,235,236,6,238,239,240,167,13,250,227,89,252,232,143,259,48,44,30,194,276,237,32,204,302,70,142,234],pointwis:248,quiver:[202,35,217,51],stream:182,shard:300,indic:64,topic:[267,64],cartan:[302,69,70,167,291,259,13,250,89],tao:52,robinson:262,multipl:[116,283],unsign:271,six:223,divis:[278,184],acycl:200,tile:40,simpl:184,map:20,product:[299,55,148,21,34,153],recogn:184,algebra:[193,202,305,165,101,82,51,214,186,61,121,169,142,16],diagram:[304,186,119,169],catalog:[123,134,139,263,94,157,189,17],shuffl:[34,148],data:[44,73,232,233,45,235,236,237,238,239,240,167,13,250,227,89,252,259,234,194,32,204,302,70],correspond:262,element:[39,111,220,55,173],combin:[63,15],allow:40,callabl:36,order:[300,242,284,30,316,269],composit:[22,91,294,126,166],kostka:46,over:93,paper:276,incid:[137,215,193],bruijn:33,perfect:308,hypergraph:[137,146],fractal:93,comprehens:[175,253,64],arrai:[195,118,182,144,271,251],non:[38,12,115,2,27,140,315,130,226],anim:40,bernoulli:179,initi:253,quickref:[139,47,134,250,121],tableaux:[281,55,134,180,117,7,166,122,296,10,292,224,158,153],hall:[83,100,77],introduct:[127,165,253],kirillov:[281,153,55,106,123],quasisymmetr:[165,272],level:[177,158,96],sidon:206,complet:253,baxter:[18,288],weyl:[228,313,205,241],semilattic:[29,39],weight:[275,114,203,277,243],poker:253,combinatori:[270,53,158,41,253,97,57,59,20,214,268,145,121,66,110,230,171,162,215],todo:[228,75,155,322,163,81,241,84,247,168,184,86,158,171,88,269,17,175,281,286,272,256,143,259,24,48,220,174,185,21,121,190,205,193,270,276,114,253,283,285,201,136,317,291,125,127,82,52,132,298,211,301,302,303,139,210,140,218,142,198,68,151,306,243,225],variabl:[115,226,27],matrix:25,space:[155,295,77,243],categori:158,nakajima:221,lattic:[155,39,143,164,277,142,29,243,295,189],sloan:56,matric:[158,135,152,81,315,222,69,131,212],integr:101,linear:[198,284],manipul:[315,184],free:[141,16],base:[297,201,280],theori:[250,121],dictionari:248,hand:276,reflect:40,puzzl:[40,52],fsmstate:184,heck:82,alcov:[276,132],first:[253,276],oper:[270,253,184],suffix:90,schubert:314,dynkin:119,misc:158,number:[244,209,184,179],rank:23,restrict:118,hook:184,tamari:[185,164],wrapper:216,ring:228,lexicograph:[253,269],differ:[247,131],cartesian:299,top:276,system:[44,73,3,233,45,235,236,6,238,239,240,167,13,250,227,89,252,232,259,234,194,276,237,32,204,129,302,137,70],construct:[253,195,251,189],functori:294,necklac:187,option:60,namespac:[213,19,3,25,97,202,219,124,79,110,245,67,274],tool:[162,87,320],copi:[146,184],park:[128,2],part:184,cyclic:172,tree:[253,158,84,285,48,30,207,90],structur:[137,149,215],charact:228,balanc:[266,80],danc:[183,40,133,216],seri:[270,316,289,78],pre:16,witt:260,comput:[53,244,56],tabl:[64,56],predic:111,lie:[16,101],squar:[0,261],multichoos:96,nonexcept:296,also:139,ideal:77,build:195,which:184,analogu:43,derec:138,pyx:183,infinit:[312,192,182],distribut:208,object:[276,158,121],monomi:[221,322],letter:290,"class":[113,286,85,255,253,181,197,59,198,163,208,103,104,105,222,184,145,109,171,231,173],homogen:49,latex:184,simplif:184,cover:[133,173],face:93,yang:288,pattern:58,phenomenon:172,sage:253,affin:[44,73,265,194,276,45,259,101,241,112,203,204,32,287,9,313,227,252],configur:[113,76,264,310,220,10,292,86],solut:276,siev:172,factor:[112,225,42],hopf:[165,121],cube:93,associahedron:24,grai:[184,102],common:[190,162,307,253],partit:[253,229,134,282,306,293,211,242,186,168,169,158,318,209],contain:120,dyck:256,summari:253,set:[253,229,134,137,208,242,269,121,206,158,107,173],modulo:[87,317],backtrack:[158,147],decompos:253,datatyp:[36,150,271],see:139,coxet:[170,152,250,276],detect:[184,120],tensor:[21,55,153],databas:268,enumer:[253,158,121,134,87,269],state:[190,184],between:[10,292],"import":[213,19,3,25,97,202,219,124,79,110,245,67,274],clusterse:319,altern:212,latin:[0,261],ranker:303,extend:[313,241],weak:180,bibd:266,extens:198,lazi:[270,289],group:[313,75,278,61,142,317,121,205,170,87,241,250],addit:248,easi:40,cycl:159,axiomat:127,relabel:167,etc:39,tutori:[276,121],lusztig:199,littelmann:11,kazhdan:199,point:253,wall:108,permut:[286,158,287,18,257,317,246,87,177],invert:184,invers:269,empti:1,mark:89,basic:[270,158],spin:50,operad:121,knutson:52,properti:[37,184],defin:[286,36,188],pairwis:111,margin:10,customiz:60,helper:[184,120],cluster:[202,51],dual:[13,280,27],ambient:295,rig:[113,76,264,310,220,168,10,292,86],finitestatemachin:184,mutat:[35,120],descent:305,author:62,perform:184,alphabet:176,same:184,binari:[253,285,65,184],split:138,knuth:[262,40],higher:276,lyndon:98,kleber:207,user:60,extern:125,aka:276,entri:222,mutation_class:279,exampl:[230,40,184,253],thi:[286,120],model:[157,223,123,203],quotient:77,gelfand:58,shape:224,gdd:278,miscellan:[270,54,154],exercic:253,recurs:[161,84,195,251],bell:244,macdonald:[92,12,218],exercis:[253,276],match:308,realiz:[143,283,277,26,142],mol:261,characterist:72,poset:[39,304,245,28,185,198,163,189],recurr:65,reshetikhin:[281,153,55,106,123],semi:29,specif:250,resolv:80,integ:[253,114,158,22,306,317,315,209,130,269],chamber:276,unord:48,output:[321,184],inter:253,acknowledg:52,interv:185,creation:[192,42],some:[253,56],intern:183,growth:118,collect:307,fsmtransit:184,definit:[62,127],substitut:[5,93],larg:10,carpent:244,content:184,refer:62,machin:[190,184],core:99,power:[258,270,289],kyoto:203,hadamard:81,about:62,constraint:269,materi:[270,267,139,250,64],foulk:46,degre:62,constructor:307,skew:[122,211],block:[266,88,80,125],morphism:5,subset:[37,253,158,74,111,273,173],schenst:262,elementari:[254,249,94],pictur:276,themat:[267,121,64],combinator:[253,19,135,25,267,64,121,47],fast:[23,271,53],custom:276,low:[177,158,96],"function":[156,268,77,4,163,80,321,309,174,247,14,88,249,171,251,253,42,258,260,2,27,102,266,298,188,190,38,195,184,280,261,116,283,278,120,165,125,49,128,129,131,272,53,54,213,56,57,322,140,144,115,68,226],polytop:253,tupl:[31,293],triangular:188,exact:133,link:[183,40,133,216],highest:[275,203],count:[210,315],"default":[213,19,3,25,97,202,219,124,79,110,245,67,274],donald:40,crystal:[157,254,123,23,264,21,106,108,191,112,275,265,290,9,127,50,296,139,263,221,94,203,67],limit:146,rauzi:[93,42],fundament:313,problem:133,similar:222,derang:178,featur:[213,19,3,25,97,202,219,124,79,110,245,67,274],classic:174,"abstract":[84,312,113],"char":271,littlewood:[83,77],incomplet:[266,80],decreas:2,file:[257,286,120],doe:286,nonsymmetr:218,quadrupl:129,probabl:253,fsmprocessiter:184,mutual:261,naf:184,field:[208,222],other:253,branch:160,test:62,node:89,draw:276,sequenc:[62,33,65,184,56],vertex:223,polynomi:[83,12,199,100,218,46,92,314],reduc:302,algorithm:[62,253,146,42],rule:160,evenli:208}})
2